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Virtual Memory Address Translation Bottleneck

Efficacy of Data TLB Prefetchers on I-TLB Miss Stream

Data TLB Prefetchers [1]
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Hardware Support

e The MMU consists of (i) Data TLB (D-TLB) Misses
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e TLBs cache the most recently
used address translations

Instruction TLB (I-TLB) Misses

L I-TLB performance used to be high
* Modern TLB organizations are

multilevel (L1-ITLB, L1-DTLB,
[.2-TLB)

PWCs store intermediate
levels of the DPage Table
(PWCpmra, PWCppp, PWCpp)

§ _ , Analysis Findings
Increasing code footprint

e Conventional delta-based prefetching is not promising for the I-TLB miss stream

Poor code locality
® Small deltas (e.g. -7,..,47) are constantly useful
Server, database and cloud applications tend to

have massive instruction footprints

* The evaluated server workloads exhibit different memory access patterns
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Related Work on Instruction Address Translation

Towards a Markov-based I-TLB Prefetcher

SW Approaches [4] HW Approaches

* To the best of our knowledge, there is no pro- 1
posed hardware scheme aimed at attenuating
the instruction TLB performance bottleneck

e Compile-time techniques for code

e Evaluated Scenarios
layout optimization

® Markov Prefetcher (MP) w/ LRU [1]
e MP w/ deltas & LRU policy

e MP w/ deltas & Random policy

e MP w/ deltas & LFU policy

LFU policy

4 Bl MP w/ LRU
17 [ MP w/ deltas & LRU

B MP w/ deltas & Random
Bl MP w/ deltas & LFU

® OS-schemes that leverage 2MB pages
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256-entry Prediction Table

B MP w/ deltas & Random
Bl MP w/ deltas & LFU

Our Objective — TLB Prefetching

% speedup
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SW/HW Approaches

* Prefetching PTEs ahead of demand accesses 1024

| 1A hes [2
ncremental Approaches [2] * Independent of the system state (OS, load,

fragmentation)

B MP w/ LRU
1 MP w/ deltas & LRU

* Rely on explicit OS and hardware
support to increase TLB reach

* On a prediction table miss ran-
domly replace one of the least
frequently accessed entries

* Does not disrupt virtual memory subsystem

e A Prefetch Queue (PQ) is used to store the
prefetched PTEs

* Susceptible to performance is-
sues when coalescing opportuni-
ties are not guaranteed (HW sup-
port, memory fragmentation)

e Hardware complexity similar
to LRU policy
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Disruptive Approaches [3] sonciusions

P with deltas and state-of-the-art MP achieve similar performance with LRU policy
* Re-engineering of whole virtual

memory subsystem

Prefetch
Page Walk

add to PQ

P with deltas requires 47% less hardware complexity compared to state-of-the-art MP

P with deltas combined with LFU policy significantly improves performance over all

. , . .
New  security vulnerabilities evaluated scenarios and workloads

might be introduced

vprefetch

e OQur preliminary results reveal that a Markov-based prefetcher has the potential to
attenuate the I-ILB performance bottleneck

® Metrics like prediction accuracy, number of memory references introduced due to
prefetch page walks and energy consumption has to be taken into account

Methodology

* The hardware complexity of a novel I-TLB prefetcher has to be minimal (<4KB)

Experimental Setup Workloads

¢ ChampSim multicore simulator References
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 Twenty five (25) server applications provided by
Qualcomm

* We simulate a 3-level split PWCs * The evaluation considers a 64-entry PQ

* Realistic page table walk




