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Virtual Memory

Paging

•Virtual and physical address
spaces are split into pages

•Each memory access requires
a virtual-to-physical address
translation.

Software Support

•Page Table stores the virtual-
to-physical mappings of all
pages loaded to memory

•X86 architectures implement 4
(or 5) level radix tree Page Ta-
ble (PML4, PDP, PD, PT)

Hardware Support

•The MMU consists of (i)
Translation Lookaside Buffer
(TLB) and (ii) Page Walk
Cache (PWC)

•TLBs cache the most recently
used address translations

•ModernTLBorganizations are
multilevel (L1-ITLB, L1-DTLB,
L2-TLB)

•PWCs store intermediate
levels of the Page Table
(PWCPML4, PWCPDP, PWCPD)

Address Translation Bottleneck

•Pagewalk hardware is activated on TLBmisses
•Pagewalks incur great latency and energy costs
• Frequent TLB misses burden performance
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Data TLB (D-TLB) Misses

•Previous work focuses on D-TLB misses due to
the growing importance of Big Data workloads

Instruction TLB (I-TLB) Misses

• I-TLB performance used to be high
• Increasing code footprint
•Poor code locality

Server, database and cloud applications tend to
have massive instruction footprints

Interaction between Instruction and Data TLB Entries
The increasing frequency of instruction TLB misses deteriorates TLB performance since
instruction PTEs thrash from the TLB useful data PTEs (and vice versa)

Related Work on Instruction Address Translation

SW Approaches [4]

•Compile-time techniques for code
layout optimization

•OS-schemes that leverage 2MB pages

SW/HW Approaches

Incremental Approaches [2]

•Rely on explicit OS and hardware
support to increase TLB reach

• Susceptible to performance is-
sues when coalescing opportuni-
ties are not guaranteed (HW sup-
port, memory fragmentation)

Disruptive Approaches [3]

•Re-engineering of whole virtual
memory subsystem

•New security vulnerabilities
might be introduced

HWApproaches

•To the best of our knowledge, there is no pro-
posed hardware scheme aimed at attenuating
the instruction TLB performance bottleneck

Our Objective – TLB Prefetching

•Prefetching PTEs ahead of demand accesses
• Independent of the system state (OS, load,
fragmentation)

•Does not disrupt virtual memory subsystem
•A Prefetch Queue (PQ) is used to store the
prefetched PTEs
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Methodology

Experimental Setup

•ChampSim multicore simulator
•Realistic page table walk

Workloads
•Twenty five (25) server applications provided by
Qualcomm

•We simulate a 3-level split PWCs •The evaluation considers a 64-entry PQ

Efficacy of Data TLB Prefetchers on I-TLB Miss Stream

25 Qualcomm Server Workloads
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Data TLB Prefetchers [1]

• Sequential Prefetcher (SP)
•Arbitrary Stride Prefetcher (ASP)
•Distance Prefetcher (DP)
•Markov Prefetcher (MP)

ASP, DP andMP use a 64-entry 4-
way prediction table

Long Story Short

•Data TLB prefetchers are able to save a small fraction of the reported I-TLB misses
•Perfect I-TLB performance reveals significant room for improvement

Analysing the I-TLB Miss Stream
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Analysis Findings

•Conventional delta-based prefetching is not promising for the I-TLB miss stream
• Small deltas (e.g. -7,..,+7) are constantly useful
•The evaluated server workloads exhibit different memory access patterns
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Event Correlation
A table-based I-TLB prefetcher would require
fewer prediction table entries to correlate the
I-TLB misses with the virtual page number
event compared to the pc event

Towards a Markov-based I-TLB Prefetcher
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Evaluated Scenarios
•Markov Prefetcher (MP) w/ LRU [1]
• MP w/ deltas & LRU policy
• MP w/ deltas & Random policy
• MP w/ deltas & LFU policy

LFU policy

•On a prediction table miss ran-
domly replace one of the least
frequently accessed entries

•Hardware complexity similar
to LRU policy
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Conclusions
•MP with deltas and state-of-the-art MP achieve similar performance with LRU policy
•MPwith deltas requires 47% less hardware complexity compared to state-of-the-artMP
•MPwith deltas combined with LFU policy significantly improves performance over all
evaluated scenarios and workloads

•Our preliminary results reveal that a Markov-based prefetcher has the potential to
attenuate the I-TLB performance bottleneck

•Metrics like prediction accuracy, number of memory references introduced due to
prefetch page walks and energy consumption has to be taken into account

•The hardware complexity of a novel I-TLB prefetcher has to be minimal (<4KB)
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