Barcelona) (UNIVERSITAT POLITECNICA
Supercomputing | DE CATALUNYA

Center

Centro Nacional de Supercomputacion p

LEVERAGING PAGE Size INFORMATION TO ENHANCE DAaTA CACHE PREFETCHING

Georgios Vavouliotis'?, Gino Chancon?, Lluc Alvarez'~, Paul V. Gratz*, Daniel A. Jiménez*, and Marc Casas'”

'Barcelona Supercomputing Center *Texas A&M University Universitat Politécnica de Catalunya

Memory Bottleneck Cache Prefetching Design & Evaluation

CPU vs RAM Speeds Fundamental Idea

e Discrepancy between processor * Proactively fetch data blocks into the on-chip
and main memory speeds caches before they are explicitly requested

@ ® (PU cycle time @ ® Memory access latenc
Why?

o - HPC and Big Data workloads feature massive data
~ -SU%/year . 5
SN e footprints that do not fit in the on-chip caches

(3.5%/year perf. impr.)

Page Size Propagation Scheme

e L1D Caches are VIPT —> On L1D misses page size is known
e [2C prefetchers are engaged on L1D misses

* Enhance L1D MSHR with one bit, indicating the page size

[

» L1D MSHR pag; size
it

0.1 I I I I | Ly
1990 1995 2000 2005 2010 2015 2020

Cache Prefetching in Practise

> L2C

™ L2C Pref.

Exploiting the Page Size Information for Improving L2C Prefetching

e Architects use on-chip cache hi- * Prefetching can be applied on all cache levels

erarchies to reduce the latency * On a cache access, the prefetcher takes as input
cost of accessing main memory the requested block address and issues prefetches

on-chip off-chip 1% '
Lol cee—— Cache
I L2C |— ‘ DRAM
Lt ' »| Prefetcher

* Today, all HPC chips employ different data cache
e . prefetchers to capture heterogeneous access pat-
limited capacity terns (e.g., Intel IceLake, AMD Zen)

v

* The L2C prefetching module consists of two engines

— Pref-4KB: L2C prefetcher that considers 4KB pages for its structures
* On-chip caches partially reduce
main memory accesses due to

— Pref-2MB: L2C prefetcher that considers 2MB pages for its structures

+ Pref-4KB and Pref-2MB are identical but consider different page sizes
* Pref-4KB and Pref-2MB capture different access patterns

* When page size is 4KB, Pref-4KB is always consulted and stops prefetching at 4KB
boundaries since physical contiguity is not guaranteed

Virtual Memory Sub-System e When page size is 2MB

— A Set-Dueling [4] variation activates either Pref-4KB or Pref-2MB

+ [f Pref-4KB is activated, it does not stop prefetching at 4KB boundaries (but in 2MB
boundaries) since Pref-4KB is aware that the block resides in a 2MB page

If Pref-2MB is activated, it stops prefetching at 2MB boundaries
L2C Prefetching Module

age size bit
pag YeS > Pref-4KB + Stop 4KB

No 1/0

Overview & Page Size

* Modern systems implement paging-based virtual memory
* The standard page size is 4KB in most systems

* Modern OSes provide support for larger page sizes (e.g., 2MB and 1GB pages)

Pref-4KB + Stop 2MB

Set-DueIing[‘" Variation 0/1 Pref-2MB + Stop 2MB

Prior Work on Cache Prefetching & Opportunities

* Numerous cache prefetchers have been proposed in recent literature [1-3]

Preliminary Performance Results

e All prior works propose cache prefetchers that use complex prefetching algorithms to cap-

ture more distinct patterns than the previously proposed designs e System with only 2MB pages (>80% of the pages are 2MB for these workloads)

e Evaluated versions of each L2C prefetcher (SPP, VLDP, BOP)

| | — Pret-4KB-Stop-4KB —> 4KB structures + stop prefetching at 4KB boundaries
* Prior cache prefetchers that operate on the physical address space assume 4KB pages — Pref-4KB-Stop-2MB —> 4KB structures + stop prefetching at 2MB boundaries

* These cache prefetchers do not permit prefetching beyond 4KB physical page boundaries — Pref-2MB-Stop-2MB —> 2MB structures + stop prefetching at 2MB boundaries
because physical contiguity is not guaranteed

Common Aspects of Cache Prefetchers

—Pref-Dynamic —> both versions of the L2C prefetcher + Set-Dueling variation

Opportunity for Improving Cache Prefetching * Geomean speedups presented in the following figure consider the entire workload set
e Modern systems vastly use larger page sizes to reduce address translation overheads g0, BroTORAKE B STOR AP === VB STOR. VB = Dynamic === BO-sforage]
* Physical pages are equally sized with the virtual pages (e.g., when a virtual page is 2MB % 70 TOI% PASEline SYSIEM =2 10 CACNE PIETELCng
the corresponding physical page is also 2MB) 8 +4.6% +9.4%(i
e Intuitively, limiting cache prefetchers to prefetch within 4KB boundaries when larger page S i
sizes are used results in sub-optimal performance gains >0 SPP VLDP BOP
Physical Machine Measurements e Simply propagating the page size information (Pref-4KB-STOP-2MB) improves per-
formance over the state-of-the-art approach (Pref-4KB-STOP-4KB) by 4.1% (SPP), 4.0%
e Cache intensive SPEC’06, SPEC’17, and GAP workloads on an Intel Xeon machine (VLDP), and 9.4% (BOP) because it enables more timely prefetching
—More than 80% of the allocated pages are 2MB pages for these workloads e BOP-2MB and BOP-Dynamic perform the same as BOP-4KB-STOP-2MB since BOP
Objective of this Work does not store the physical pages in any structure
* Pref-Dynamic provides the largest speedups among the evaluated scenarios; SPP-
Dynamic outperforms its standard version (SPP-4KB-STOP-4KB) by 6.9% (geomean)
on the physical address space by exploiting the page size information * Doubling the size of each cache prefetcher (ISO-Storage) provides negligible benefits
Methodology Conclusions

* Propagating the page size to L2C prefetchers has potential for large performance gains
e Applicable to all prior and new spatial L2C prefetchers
e Applicable to LLC prefetching by propagating the page size bit through the L2C MSHR

* Potential impact on future industrial microarctitectural designs

Evaluated L2 Cache Prefetchers Baseline

e SPP[1] e VLDP [2] ¢ BOP [3] Performance improvement is computed over a base-
line without prefetching at any cache level

[1]]. Kim et al., "Path confidence based lookahead prefetching", MICRO’16
2] M. Shevgoor et al., "Efficiently prefetching complex address patterns"”, MICRO’15

3] P. Michaud, "Best-offset hardware prefetching", HPCA'16
4] Qureshi et al., "Adaptive insertion policies for high performance caching", ISCA’07

