

LEVERAGING PAGE SIZE INFORMATION TO ENHANCE DATA CACHE PREFETCHING Georgios Vavouliotis^{1,3}, Gino Chancon², Lluc Alvarez^{1,3}, Paul V. Gratz², Daniel A. Jiménez², and Marc Casas^{1,3} ¹Barcelona Supercomputing Center ²Texas A&M University ³Universitat Politècnica de Catalunya

Memory Bottleneck	Cache Prefetching	Methodology		
CPU vs RAM Speeds	Fundamental Idea	Simulator	Simulated System	Workloads
• Discrepancy between processor and main memory speeds	• Proactively fetch data blocks into the on-chip caches before they are explicitly requested	• ChampSim	 L1D Cache: 48KB (12-way) L1I Cache: 32KB (8-way) 	 SPEC CPU 2006 SPEC CPU 2017
$100 \qquad -11\%/\text{year} \qquad -0.7\%/\text{year} \\ 10 \qquad -30\%/\text{year} \\ (52\%/\text{year perf. impr.}) \qquad 360\times$	Why? • HPC and Big Data workloads feature massive data	 No prefetching at any cache level 	 L2 Cache: 512KB (8-way) L3 Cache: 2MB (16-way) DRAM: 8GB 	 Qualcomm traces pro- vided for CVP-1 GAP suite

• Architects use on-chip cache hierarchies to reduce the latency cost of accessing main memory

 On-chip caches partially reduce main memory accesses due to limited capacity footprints that do not fit in the on-chip caches

Cache Prefetching in Practise

- Prefetching can be applied on each cache level
- On a cache access, the prefetcher takes as input the requested block address and issues prefetches

• Today, all HPC chips employ various data cache prefetchers to capture heterogeneous access patterns (e.g., Intel IceLake, AMD Zen)

Virtual Memory Sub-System

Overview

- All modern systems implement paging-based virtual memory
- Virtual and physical address spaces are split into pages
- Each memory access requires a virtual-to-physical address translation

Potential Performance Gains

- System with only 2MB pages (>90% of the allocated pages are 2MB for these workloads)
 Evaluated versions of each profetchers
- Evaluated versions of cache prefetchers
- <Cache-Prefetcher>-4KB: stop prefetching at 4KB boundaries
- <Cache-Prefetcher>-2MB: stop prefetching at 2MB boundaries

Page Sizes

- The standard page size is 4KB in most systems
- To improve virtual memory management modern OSes provide support for larger page sizes (e.g., 2MB and 1GB pages)

Prior Work on Cache Prefetching & Opportunities

- Numerous cache prefetchers have been proposed in recent literature [1-3]
- All prior works propose cache prefetchers that use complex prefetching algorithms to capture more distinct patterns than the previously proposed designs

Common Aspects of All Cache Prefetchers

- All prior cache prefetchers are designed assuming 4KB pages
- All prior cache prefetchers do not permit prefetching beyond 4KB physical page boundaries because physical contiguity is not guaranteed

Opportunity for Improving Cache Prefetching

Modern systems vastly use larger page sizes to reduce address translation overheads
Physical pages are equally sized with the virtual pages (e.g., when a virtual page is 2MB

SPP-2MB, VLDP-2MB, and BOP-2MB improve geomean performance over SPP-4KB, VLDP-4KB, and BOP-4KB by **4.1%**, **4.0%**, and **9.4%**, respectively

Propagating the Page Size Information

- Modern OSes concurrently support multiple page sizes (e.g., 4KB, 2MB)
 L1D Caches are VIPT -> On L1D misses page size is known
- L2C prefetchers are engaged on L1D misses

Page Size Propagation Scheme

- Enhance L1D MSHR with one bit, indicating the page size
- L2C prefetchers use the page size bit of L1D MSHR to adjust prefetching boundaries

the corresponding physical page is also 2MB)

• Intuitively, limiting cache prefetchers to prefetch within 4KB boundaries when larger page sizes are used results in sub-optimal performance gains

Physical Machine Measurements

- Evaluation of SPEC 2006, SPEC 2017, and GAP suites on an Intel Xeon machine
- More than 90% of the allocated pages are 2MB pages for these workloads

Our Approach

- Enhance the performance of all prior and new cache prefetchers by propagating the page size information
- Fake & safe beyond page boundaries cache prefetching
- -Cache prefetcher crosses 4KB boundaries when the block resides in a 2MB page
- More effective and timely cache prefetching

Conclusions

- Propagating the page size to cache prefetchers provides significant performance gains
 Applicable to all prior and new cache prefetchers
- Potential impact on future industrial designs

References

[1] J. Kim et al., "Path confidence based lookahead prefetching", MICRO'16
[2] M. Shevgoor et al., "Efficiently prefetching complex address patterns", MICRO'15
[3] P. Michaud, "Best-offset hardware prefetching", HPCA'16