
Page Size Aware Cache Prefetching

Georgios Vavouliotis§†
georgios.vavouliotis@bsc.es

Paul V. Gratz‡

pgratz@tamu.edu

Gino Chacon‡
ginochacon@tamu.edu

Daniel A. Jiménez‡

djimenez@acm.org

Lluc Alvarez§†
lluc.alvarez@bsc.es

Marc Casas§†

marc.casas@bsc.es

§Barcelona Supercomputing Center †Universitat Politècnica de Catalunya ‡Texas A&M University

Abstract—The increase in working set sizes of contemporary
applications outpaces the growth in cache sizes, resulting in
frequent main memory accesses that deteriorate system per-
formance due to the disparity between processor and memory
speeds. Prefetching data blocks into the cache hierarchy ahead
of demand accesses has proven successful at attenuating this
bottleneck. However, spatial cache prefetchers operating in the
physical address space leave significant performance on the
table by limiting their pattern detection within 4KB physical
page boundaries when modern systems use page sizes larger
than 4KB to mitigate the address translation overheads.

This paper exploits the high usage of large pages in modern
systems to increase the effectiveness of spatial cache prefetch-
ing. We design and propose the Page-size Propagation Module
(PPM), a µarchitectural scheme that propagates the page size
information to the lower-level cache prefetchers, enabling safe
prefetching beyond 4KB physical page boundaries when the
accessed blocks reside in large pages, at the cost of augmenting
the first-level caches’ Miss Status Holding Register (MSHR)
entries with one additional bit. PPM is compatible with any
cache prefetcher without implying design modifications. We
capitalize on PPM’s benefits by designing a module that consists
of two page size aware prefetchers that inherently use different
page sizes to drive prefetching. The composite module uses
adaptive logic to dynamically enable the most appropriate
page size aware prefetcher. Finally, we show that the proposed
designs are transparent to which cache prefetcher is used.

We apply the proposed page size exploitation techniques
to four state-of-the-art spatial cache prefetchers. Our evalua-
tion shows that our proposals improve single-core geomean
performance by up to 8.1% (2.1% at minimum) over the
original implementation of the considered prefetchers, across
80 memory-intensive workloads. In multi-core contexts, we
report geomean speedups up to 7.7% across different cache
prefetchers and core configurations.

Keywords-cache hierarchy, prefetching, spatial correlation,
microarchitecture, hardware, virtual memory, address transla-
tion, large pages, memory management, memory wall

I. INTRODUCTION

System performance continues to be limited by the Mem-
ory Wall [1], [2], i.e., the discrepancy between high memory
access latencies and high processor speeds. Low-latency
caches can attenuate this bottleneck by exploiting applica-
tions’ locality to reduce the latency cost of demand memory
accesses but are limited in capacity due to the overhead of
implementing large SRAMs near cores.

.

4KB Page

. . .

.

4KB Page 4KB Page

Large Page

A

.

B

Figure 1. Data structure residing on multiple 4KB pages (up) and one large
page (down). Arrows (black and red) illustrate the memory access patterns.
Red arrows represent patterns across 4KB pages that a cache prefetcher
operating on the physical address space is not allowed to prefetch for (even
if it correctly identifies the patterns). There are no red arrows when the data
structure resides in a large page.

Prefetching is a technique that hides the latency of
memory accesses by proactively fetching data blocks into
the cache hierarchy before a core explicitly demands
them—alleviating the pressure placed on the memory sub-
system by applications with large working sets that the
caches cannot fully contain [3]. Effective prefetching has
proven successful in attenuating the Memory Wall bot-
tleneck; this is the reason why modern high-performance
computing chips employ various cache prefetchers [4]–[13].

Numerous cache prefetchers have been proposed in recent
literature [14]–[27]. These prefetchers generally fall into
two categories; spatial prefetchers and temporal prefetchers.
Spatial prefetchers [14]–[21] exploit the similarity of access
patterns across different memory regions to drive prefetching
decisions. In contrast, temporal prefetchers [22]–[26] do
so by recording sequences of past cache misses. Although
effective, temporal prefetchers have drawbacks compared
to spatial prefetchers: (i) spatial prefetchers require orders
of magnitude less metadata storage compared to temporal
prefetchers [21], (ii) spatial prefetchers can save compulsory
misses [28] whereas temporal prefetchers are fundamentally
limited to prefetch for compulsory misses, and (iii) spatial
prefetchers not only save long-latency cache misses but also
improve the overall system energy consumption since they
increase the DRAM row buffer hit ratio [20], [21], [29].

Previously proposed spatial cache prefetchers operating
in the physical address space preserve one key property:
they do not permit prefetching beyond 4KB physical page
boundaries as physical address contiguity is not guaranteed,
i.e., addresses that are contiguous in the virtual address space
may be very distant in the physical address space. In addi-
tion, crossing 4KB physical page boundaries for prefetching
is susceptible to security issues since an adversary could
exploit it to create a side-channel [30]–[32]. Prefetchers
are unaware of the access permissions of specific pages,
thus page-crossing prefetching might allow loading data
from pages the prefetcher’s cache would not otherwise have
access to. Indeed, a recent reverse engineering study [30]
demonstrates how to exploit page-crossing prefetching at the
lower-level caches to perform a side-channel attack.

Limiting spatial prefetchers to prefetch for intra-4KB
physical page patterns limits their ability to speculate long
streams of memory accesses [30]. Enabling safe prefetching
beyond 4KB physical pages requires direct access to the
Translation Lookaside Buffer (TLB) and a reverse address
translation [33]. These requirements pose high latency and
energy overheads, hindering safe prefetching across 4KB
physical page boundaries in real-world implementations.

The increase in working sets sizes of memory-intensive
applications also places tremendous pressure on the TLB
hierarchy [34]–[47]. This pressure results in frequent page
walks that deteriorate application performance, even in the
presence of dedicated software and hardware mechanisms
for address translation [35], [48]–[59]. The requirement for
small and fast TLBs with low miss rates has led to the advent
of large page size support in many operating systems [60],
[61], architectures [62]–[65], and virtualization enterprises
[66]. For example, x86 architectures support 2MB and 1GB
pages alongside standard 4KB pages to increase TLB reach.

This paper demonstrates that exploiting modern preva-
lence and support for large pages can significantly improve
a system’s overall performance by enabling safe prefetching
beyond 4KB physical page boundaries when the accessed
blocks reside in large pages. Figure 1 illustrates this oppor-
tunity by considering a generic data structure and showing
its memory access patterns when mapped into multiple 4KB
pages A and a single large page B . Although the data
structure has predictable patterns across 4KB boundaries,
the prefetcher would not prefetch these patterns (red arrows
in Figure 1 A) due to the limitation of prefetching for
intra-4KB patterns. In contrast, when the data structure is
mapped to a large page (Figure 1 B), the prefetcher could
safely cross 4KB boundaries and speculate on future access
patterns if it was aware that the block resides in a large page.
However, the page size information is not available to cache
prefetchers operating in the physical address space.

We perform two sets of experiments to highlight the
potential of leveraging the presence of large pages for
improving spatial cache prefetching effectiveness. First, we

SPP VLDP PPF BOP
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Pr
ob

ab
ilit

y

Figure 2. Probability distribution depicted with violin plots showing the
probability for a given prefetch to be discarded because it attempts to cross
4KB physical page boundaries when the block resides in a large page,
considering four spatial cache prefetchers and 80 applications.

demonstrate that modern systems effectively use large pages
by executing a set of memory-intensive workloads spanning
various contemporary benchmark suites [67]–[69] on a real
system [70] and observing that the majority of the con-
sidered workloads heavily use large pages throughout their
entire execution. Second, we quantify the missed opportunity
for safely crossing 4KB physical page boundaries when the
block resides in a large page (Figure 1 B) by evaluating four
state-of-the-art lower-level spatial cache prefetchers (SPP
[14], VLDP [15], PPF [16], BOP [17]) using 80 memory-
intensive applications from various suites [39], [67]–[69],
[71], [72]. Figure 2 depicts the probability that a given
prefetch will attempt to cross 4KB page boundaries when
the block resides in a large page, but the prefetcher discards
it because it is unaware that the block resides in a large page.
For most workloads, 1 out of 10 prefetches are discarded due
to the restriction of not crossing 4KB boundaries. At the
extreme, some workloads see 1 out of 2 prefetches being
discarded due to this limitation. Taking into account that
cache prefetchers issue multi-million prefetches per executed
workload, the probability shown in Figure 2 reveals that
enhancing lower-level cache prefetchers with the page size
information of the accessed data blocks has the potential
to significantly improve cache prefetching performance due
to the opportunity of safely crossing 4KB physical page
boundaries when data blocks reside in large pages.

Based on our findings, we propose the Page-size Propa-
gation Module (PPM), the first µarchitectural scheme that
propagates the page size information to the lower-level cache
prefetchers, enabling safe prefetching beyond 4KB physical
page boundaries when the accessed block resides in a large
page. PPM exploits the available address translation meta-
data after a first-level cache miss and directs the page size
information to the lower-level cache prefetchers through the
first-level caches’ Miss Status Holding Registers (MSHRs).
PPM operates without requiring any costly TLB lookup
or reverse address translation. Moreover, we highlight that
PPM does not imply any modification in the design of a
lower-level cache prefetcher. For the rest of the paper, we
refer to a prefetcher that exploits PPM as Page Size Aware

Prefetcher (Pref-PSA).1 Note that a Pref-PSA inherently uses
4KB pages to drive prefetching decisions since PPM enables
prefetching beyond 4KB physical page boundaries (when
possible) without modifying the prefetcher’s design.

We capitalize on PPM’s benefits by transparently integrat-
ing the notion of large pages into the design of any cache
prefetcher.1 We observe that doing so may positively or neg-
atively impact performance as some workloads enjoy great
benefits by making the prefetcher inherently use large pages
while others experience performance degradation because
large pages provide a coarser representation of the memory
access patterns than standard 4KB pages. To avoid harming
performance while enjoying the benefits of integrating large
pages in the prefetcher’s design, we implement a composite
scheme that consists of two identical versions of the same
Pref-PSA1 that differ in only one aspect; one Pref-PSA
inherently uses 4KB pages to drive prefetching while the
other Pref-PSA uses large pages. Finally, the composite
scheme uses adaptive logic based on Set-Dueling [73] to dy-
namically enable the most appropriate of the two competing
prefetchers. We refer to this composite prefetcher as Page
Size Aware Prefetcher with Set Dueling (Pref-PSA-SD).1

In summary, this paper makes the following contributions:

• This is the first study to reveal that leveraging modern
prevalence and support for large pages can improve the
effectiveness of spatial cache prefetchers operating in
the physical address space due to the arising opportu-
nity for crossing 4KB physical page boundaries when
the accessed blocks reside in large pages.

• We propose Page-size Propagation Module (PPM), the
first µarchitectural scheme that enables safe prefetching
beyond 4KB physical page boundaries. Coupling prior
spatial cache prefetchers SPP [14], VLDP [15], PPF
[16], and BOP [17] with PPM provides single-core
geomean speedups of 5.5%, 2.1%, 4.7%, and 2.1%
over their original versions that stop prefetching at 4KB
boundaries no matter the size of the page where the
blocks reside, respectively, across 80 workloads. PPM
does not imply modifications in the prefetcher’s design.

• We capitalize on PPM by transparently integrating
large pages into any prefetcher’s implementation and
designing a composite prefetcher, named Page Size
Aware Prefetcher with Set Dueling (Pref-PSA-SD),1 that
selects between two identical Pref-PSAs that only differ
in the page size that they use to drive prefetching. Our
single-core evaluation shows that SPP-PSA-SD, VLDP-
PSA-SD, PPF-PSA-SD, and BOP-PSA-SD outperform
their original version by 8.1%, 4.0%, 5.1%, and 2.1%,
respectively, across 80 workloads. In multi-core con-
texts, we report geomean speedups up to 7.7% across
different prefetchers and core configurations.

1It can be any cache prefetcher operating in the physical address space.

II. BACKGROUND

A. Data Cache Prefetching
Data cache prefetching is a technique that hides the

latency cost of memory accesses by proactively fetching data
blocks into the caches before a core explicitly requests them.
Prior work in the domain can be generally classified into
spatial cache prefetchers and temporal cache prefetchers.
Spatial prefetchers [14], [15], [17]–[21] rely on the similarity
of access patterns across different memory regions to drive
prefetching, while temporal prefetchers [22]–[26] do so by
recording the sequence of past cache misses, assuming that
there will be a recurrence of those misses in the near future.

Spatial cache prefetchers are considered effective and are
widely used in real-world implementations [5], [7], [70],
[74] due to their intrinsic properties that provide unique
benefits. Specifically, spatial prefetchers require orders of
magnitude less metadata storage than temporal prefetchers
[21] because the former store only deltas/offsets between
accessed blocks within pages, whereas the latter records the
complete sequence of the addresses that cause cache misses.
In addition, spatial prefetchers can save compulsory cache
misses, which constitute a critical bottleneck in applications
[28], since they leverage observed deltas on already seen
pages to prefetch for unobserved pages. Contrarily, temporal
prefetchers record sequences of past misses, fundamentally
limiting their ability to save compulsory misses. Finally,
prior work demonstrates that spatial prefetches that reach
DRAM typically enjoy row buffer hits as opposed to tem-
poral prefetches, downplaying the fetch order impact while
reducing the overall energy consumption of the system [20],
[21], [29].

B. Architectural Support for Address Translation
Each memory access on paging-based virtual memory sys-

tems requires an address translation from the virtual to the
physical address space. Recent work [34]–[47] demonstrates
that memory-intensive applications experience significant
performance degradation (even up to 50%) due to tremen-
dous pressure placed on the virtual memory subsystem.
Modern systems provide a combination of both software
and hardware mechanisms to reduce address translation
overheads [35], [48]–[59]. The page table is an OS-managed
and architecturally visible structure that contains the virtual-
to-physical mappings of all pages loaded to main memory.
In x86-64 architectures, the page table is implemented as a
multi-level radix tree structure [55], [75]. The Translation
Lookaside Buffer (TLB) is a small and fast buffer that
stores the most recently used address translations entries
and is typically implemented as a multi-level structure [33].
Finally, the MMU Caches [48] (referred as Page Structure
Caches in x86 architectures) are µarchitectural structures
that reduce some of the page walk references to the memory
hierarchy (L1D→L2C→LLC→DRAM) by caching interme-
diate levels of the radix tree page table [35], [56], [57].

1) Large Pages: Even in the presence of dedicated
schemes for the virtual memory subsystem (Section II-B),
address translation is still a major performance obstacle
for contemporary applications [43], [76]. To alleviate this
bottleneck, modern systems have introduced large pages,
i.e., pages larger than a standard 4KB page. For instance,
x86-64 processors support 2MB and 1GB pages alongside
standard 4KB pages. Effectively using large pages provides
unique performance and energy gains. A large TLB entry
accommodates the translation of a much larger contiguous
memory region (e.g., a 2MB page covers 512 times more
memory space than a single 4KB page), increasing TLB
reach. Large pages also reduce the number of page table
levels that must be traversed upon a last-level TLB miss (4
traversals with 4KB pages, 3 traversals with 2MB pages).

Modern OSes provide two mechanisms to allocate large
pages. The first approach requires the user to reserve physi-
cal memory for large pages and use the hugetlbfs library [77]
to map specific memory segments of the application onto
large pages. This approach is static and limits the usage of
large pages. In the second approach, the OS transparently
allocates large pages without requiring any user involve-
ment. Specifically, the Linux Transparent Huge Pages (THP)
mechanism [60] provides automatic and transparent support
for 2MB pages. However, this is not the case for pages larger
than 2MB (e.g., 1GB pages for x86 architectures), which still
require manual allocation using the hugetlbfs library.2

C. Spatial Cache Prefetching and Page Boundaries

1) Spatial Prefetching at L1D: Modern L1D prefetchers
use virtual addresses to drive prefetching and exploit the
consistent streams exposed by the accessibility of the virtual
addresses in the form of streaming and stride prefetch-
ers [55], [78]–[82], identifying key access behaviors [25],
[83], and correlated instruction-pointer prefetchers [55],
[84]. Conceptually, these prefetchers can cross 4KB page
boundaries [85] because they have direct access to the
address translation module to extract the virtual-to-physical
mappings of the pages where the prefetched blocks reside.
In practice, it is not that straightforward. What should
L1D prefetchers do when the translation of the page where
the prefetched block resides is not present in the TLB?
Should they discard the prefetch or fetch the corresponding
translation from memory? Doing so would impact (posi-
tively or negatively) performance, bandwidth, and energy
consumption depending on the accuracy of the page-crossing
prefetching. Notably, crossing page boundaries greatly im-
pacts the timeliness of the L1D prefetching [86]; even if
page-crossing prefetching is accurate, it might negatively
impact prefetching timeliness (and the system’s overall per-
formance) when it goes all the way down to DRAM to find

2There is a recent work [44] that aims at automatically and transparently
allocating all page sizes in x86 systems (including 1GB pages).

0

50

100
lbm milc libquantum

0

50

100
mcf soplex bwaves

0

50

100
fotonik3d_s roms_s

Execution Time

M
e
m

o
ry

 m
a
p
p
e
d
 i
n
 2

M
B

 p
a
g
e
s

(%
)

pr.road

Figure 3. Percentage of allocated memory mapped to 2MB pages across
the entire execution of nine representative memory-intensive benchmarks.

the address translations since L1D prefetchers [83] require
quick turnaround times on memory accesses due to the
sheer amount of requests seen at the first-level caches. For
these reasons, state-of-the-art L1D prefetchers [83] typically
permit prefetching within standard 4KB page boundaries.3

2) Spatial Prefetching at L2C/LLC: Prefetchers for the
lower-level caches drive prefetching using physical ad-
dresses because the virtual addresses are not propagated to
the lower-level caches since these caches are implemented
as physically indexed physically tagged (PIPT) structures.
In addition, lower-level cache prefetchers stop prefetching at
4KB physical boundaries since physical address contiguity
is not guaranteed, i.e., contiguous virtual addresses might
not be contiguous in the physical address space, thus per-
mitting prefetching beyond 4KB physical boundaries might
introduce new security vulnerabilities. Allowing L2C/LLC
prefetchers to speculatively cross 4KB physical page bound-
aries may result in prefetching data from pages that a given
process does not have access to, thereby preloading data into
the cache hierarchy. This behavior results in a side-channel
in which an adversary can detect if the victim has accessed
a page despite the adversary not having permissions to that
page [30]–[32]. Indeed, a recent reverse engineering study
[30] shows how to perform a side-channel attack on recent
Apple processors (e.g., M1 Max and M1 Pro) by exploiting
page-crossing prefetching at the lower-level caches.

III. MOTIVATION

This section reveals that exploiting the presence of large
pages in modern systems can improve cache prefetching
effectiveness by enabling safe prefetching across 4KB page
boundaries. Our analysis focuses on x86 architectures with
4KB and 2MB pages since modern OSes provide automatic
and transparent support for only these page sizes (Section
II-B1). In addition, we target cache prefetchers operating in
the physical address space (L2C/LLC prefetchers) and not

3Designing a synergistic TLB prefetcher that improves the timeliness of
L1D page-crossing prefetching is a promising research direction.

cache prefetchers driving prefetching with virtual addresses
(L1D prefetchers) for the reasons explained in Section II-C1
and for two other reasons. First, L1D prefetchers issue
prefetch requests using virtual addresses on every L1D
access. However, the page size information is part of the
address translation metadata available after the TLB access,
thus waiting for the page size information upon TLB misses
might harm the timeliness of L1D prefetching. Second, first-
level caches necessitate simple and fast prefetchers due
to their sizes and access latencies as opposed to lower-
level caches that permit the implementation of sophisticated
prefetchers. Finally, we focus on spatial prefetchers for the
reasons outlined in Section II-A.

A. Limitations of Existing Cache Prefetchers

Previously proposed lower-level spatial cache prefetchers
preserve one key property; they assume the use of only
standard 4KB pages, limiting their pattern detection to
4KB memory regions. Consequently, they do not permit
prefetching beyond 4KB physical page boundaries because
physical address contiguity is not guaranteed, i.e., addresses
that are contiguous in the virtual address space might not
be contiguous in the physical address space. Moreover, prior
spatial cache prefetchers stop prefetching at 4KB physical
page boundaries because crossing 4KB boundaries might
introduce new security vulnerabilities since an adversary
could exploit page-crossing prefetching to attack the system,
as explained in Section II-C.

Enabling safe spatial prefetching beyond 4KB physical
page boundaries would ideally require direct access to the
TLB to extract the virtual-to-physical mappings of the pages
where the prefetched blocks reside. Doing so for spatial
prefetchers operating in the physical address space requires
allowing direct access from the lower-level caches to TLB to
perform a reverse translation from the physical to the virtual
address space. This reverse translation incurs high overheads
since the reverse mappings are multi-valued functions [33].

Finding 1. There is no previously proposed µarchitectural
scheme that ensures safe spatial prefetching beyond 4KB
physical page boundaries for the lower-level caches.

B. Opportunity for Safe Prefetching Across 4KB Boundaries

As explained in Section II-B1, systems provide support for
large page sizes to reduce the address translation overheads.
When large pages are used, the corresponding physical
mappings (physical pages) are also large, i.e., the virtual
and corresponding physical pages are of the same size. Intu-
itively, limiting the cache prefetcher to a 4KB physical page
boundary when the accessed block resides on a large page
leads to sub-optimal performance gains due to the missed
opportunity for safely prefetching across 4KB boundaries.

The first question we answer is whether modern systems
practically use large pages or not. To do so, we execute a set

lb
m

m
ilc

lib
qu

an
tu

m
m

cf

so
pl

ex
bw

av
es

fo
to

ni
k3

d_
s

ro
m

s_
s

pr
.ro

ad
G
eo

M
ea

n

0

50

100

150

S
p

e
e
d

u
p

 (
%

)

SPP SPP-PSA-Magic

Figure 4. Performance comparison between the original implementation
of SPP and the ideal page size aware SPP (SPP-PSA-Magic) across a set
of memory-intensive workloads.

of memory-intensive benchmarks from various suites (SPEC
2006 [67], SPEC 2017 [68], and GAP [69]) on an Intel Xeon
E5-2687W, collecting the usage of 4KB and 2MB pages with
the page-collect tool [87] and Linux’s THP mechanism [60]
enabled (Section II-B1). Figure 3 presents the percentage
of allocated memory mapped in 2MB pages across the
execution of nine memory-intensive workloads. The main
takeaway of this experiment is that most workloads heavily
use 2MB pages, corroborating the conclusions of prior work
[42], [44], [45]. Interestingly, most workloads preserve the
high usage of 2MB pages during their entire execution.

Finding 2. Modern systems heavily use 2MB pages when
executing memory-intensive applications.

1) Quantifying the Potential: Qualitatively, making
lower-level cache prefetchers aware of the size of the
page where the accessed blocks reside would enable safe
prefetching beyond 4KB physical page boundaries when the
corresponding page is 2MB, resulting in better prefetch-
ing timeliness and coverage. Removing the restriction of
prefetching within 4KB physical boundaries would allow
the prefetchers to detect more distinct patterns, increasing
their coverage. Furthermore, the prefetchers would be able
to timely prefetch patterns that cross 4KB physical page
boundaries instead of waiting for an access to the next page
to start issuing prefetches for the already captured patterns.

Underlying Prefetcher. To quantitatively answer whether
or not large page exploitation can improve the effectiveness
of spatial prefetching for the lower-level caches, we consider
the Signature Path Prefetcher (SPP) [14], a confidence-based
look-ahead L2C prefetcher that directs prefetched blocks
into L2C or LLC depending on its internal confidence mech-
anism. SPP creates a compressed signature and associates it
with the physical page address. To do so, SPP relies on
two main structures: (i) the Signature Table, a table indexed
with the physical page number that stores the history of
previously delta patterns per page as a compressed signature,
and (ii) the Pattern Table, a table indexed by the signatures
generated by the Signature Table that stores predicted deltas.

We focus on SPP to demonstrate the potential benefits
of enabling beyond 4KB physical page boundaries spatial
prefetching by leveraging the presence of 2MB pages in
modern systems since SPP provides the basis for many L2C
prefetcher designs and optimizations [16], [18], and has been
deployed in real-world industrial designs [7]. In subsequent
sections, we consider additional L2C prefetchers to highlight
our proposals’ versatility.

Methodology. To quantify the benefits that large pages
could bring in spatial cache prefetching, we use an enhanced
version of ChampSim [88] that supports both 4KB and 2MB
pages. Section V describes our simulation infrastructure.

We implement and evaluate two different versions of
SPP to demonstrate the benefits of exploiting the presence
of 2MB pages for enhancing lower-level cache prefetching
performance. The first version corresponds to the original
implementation of SPP, which stops speculation at 4KB
physical page boundaries, no matter the page size of the
accessed block since it does not have any notion of the page
size. The second version of SPP differs from the original in
that SPP magically knows the page size of the accessed
blocks, so it stops prefetching at 4KB boundaries when
the block resides in a 4KB page or 2MB boundaries when
the block resides in a 2MB page. Figure 4 presents the
performance of the original SPP and its ideal page size aware
version (SPP-PSA-Magic) over a baseline without prefetch-
ing at any cache level, similar to prior work [14], [16], [18],
across the same set of memory-intensive benchmarks used
for the real system measurements, presented in Section III-B.
Our evaluation (Section VI) considers additional workloads
(Section V) to highlight the benefits of our proposals.

Figure 4 reveals that magically propagating the page
size information to SPP significantly improves its perfor-
mance since SPP-PSA-Magic outperforms SPP for all con-
sidered workloads (5.2% in geomean). The only exception
is soplex where SPP and SPP-PSA-Magic provide sim-
ilar speedups since this workload mainly uses 4KB pages,
limiting the opportunity for further performance gains by
exploiting the presence of 2MB pages. SPP-PSA-Magic
outperforms SPP original because it experiences better time-
liness and coverage than SPP. Specifically, SPP-PSA-Magic
issues prefetches that SPP would otherwise discard due to
the limitation of prefetching for intra-4KB page patterns or
postponing until there is an access to the prefetched block’s
page. Finally, we emphasize that SPP-PSA-Magic does not
imply any modification to SPP’s original design since it
keeps driving prefetching using 4KB indexes, similar to SPP
original, despite its awareness of the page size.

Finding 3. Making cache prefetchers operating in the
physical address space aware of the page size has po-
tential for significantly improving system’s performance
without any modification in the prefetcher’s design.

lb
m

m
ilc

lib
qu

an
tu

m

m
cf

so
pl

ex

bw
av

es
fo

to
ni

k3
d_

s
ro

m
s_

s

pr
.r
oa

d
G

eo
M

ea
n

0

50

100

150

S
p

e
e
d

u
p

 (
%

)

SPP SPP-PSA-Magic SPP-PSA-Magic-2MB

Figure 5. Performance of SPP original, SPP-PSA-Magic from Figure 4,
and the ideal page size aware SPP that inherently uses 2MB pages (SPP-
PSA-Magic-2MB), across a set of memory-intensive workloads.

C. Integrating Large Pages into the Design

Section III-B1 reveals that magically propagating the page
size information to SPP provides large speedups without
implying any modification to its original design. Apart from
this, what would be the performance impact of integrating
2MB pages into the design of SPP? This section answers
this question, using the same baseline as Section III-B1.

The original version of SPP uses multiple structures to
drive prefetching (Section III-B1). Only one of these struc-
tures, named Signature Table, uses the physical page number
for indexing. Therefore, we implement another version of
SPP that differs from the original version in only one
aspect; it uses 2MB pages, not 4KB pages, to index the
Signature Table. Consequently, the new SPP version can
store deltas into the structure that stores predicted deltas,
named Pattern Table, that are larger than the ones stored in
the corresponding structure of SPP original and SPP-PSA-
Magic.4 In addition, the signature stored in the Signature
Table depends on the deltas stored in the Pattern Table.
Consequently, this new version of SPP has fundamental
differences compared to SPP original and SPP-PSA-Magic:
(i) it eliminates aliasing in the Pattern Table due to indexing
with 2MB pages at the cost of generalizing patterns among
all 4KB pages within a 2MB memory block, and (ii) it can
discover patterns that SPP original and SPP-PSA-Magic fail
at finding due to considering larger deltas for prefetching
and/or experiencing less aliasing in the Pattern Table. Note
that the new SPP version is magically aware of the page
size to adjust its prefetching boundaries accordingly, similar
to SPP-PSA-Magic of Section III-B1. We refer to this new
SPP version as SPP-PSA-Magic-2MB. Figure 5 presents the
speedups of SPP original, SPP-PSA-Magic from Section
III-B1, and SPP-PSA-Magic-2MB.

Figure 5 reveals that SPP-PSA-Magic-2MB behaves dif-
ferently across different benchmarks. For example, it pro-
vides huge speedups over both SPP and SPP-PSA-Magic
for the milc benchmark. We observe such behavior because

4Deltas within a 4KB page range between -64 to +64 whereas deltas
within a 2MB page range between -32768 to +32768.

L2C

L2C PrefetcherL1D

page size
 bit

L1D MSHR

...
Miss

4KB?

0/1 .

...

...
...

page

. Pref-PSA

0/1?
Stop @ 4KB Boundaries

Stop @ 2MB Boundaries

0

1

..

size

Figure 6. Page-size Propagation Module (PPM).

SPP-PSA-Magic-2MB does not suffer from aliasing in the
Pattern Table and it prefetches for patterns that both SPP
and SPP-PSA-Magic fail at capturing due to considering
smaller deltas.4 For benchmarks like libquantum, SPP-
PSA-Magic-2MB performs similar to SPP-PSA-Magic (still
greater than SPP original). However, there are benchmarks
(e.g., soplex) where SPP-PSA-Magic-2MB significantly
degrades performance over SPP original. Such behavior is
observed because indexing the Signature Table with 2MB
pages changes its content and the patterns it captures.
Interestingly, results presented in Figure 5 demonstrate that
indexing with 4KB pages, regardless of whether the block
resides in a 4KB or a 2MB page, is sometimes better than in-
dexing with 2MB pages since SPP-PSA-Magic outperforms
SPP-PSA-Magic-2MB for some workloads (e.g., soplex,
pr.road). This is the case for workloads that have fine-
grain address patterns (4KB-grain). In other words, when
a block resides in a 2MB page it is seldom beneficial to
index the prefetcher’s structures with 2MB pages; sometimes
indexing with 4KB pages, no matter the size of the page
where the accessed block resides, provides better prefetches.

Finding 4. Integrating 2MB pages into the design of
a cache prefetcher may positively or negatively impact
performance, depending on the workload. A scheme that
dynamically selects between two page size aware versions
of a prefetcher that drive speculation considering different
page sizes has the potential to deliver outstanding benefits.

D. Putting Everything Together

Sections III-B1 and III-C highlight that leveraging the
presence of 2MB pages in modern systems for lower-level
cache prefetching has the potential to provide significant
benefits. However, the reported gains assume magically
propagating the page size information to the lower-level
cache prefetchers. Realistically leveraging 2MB pages for
enhancing cache prefetching performance requires (i) a
scheme that propagates the page size information to the
lower-level cache prefetchers, and (ii) a smart mechanism
that enables the page-size aware version of the prefetcher
that inherently uses 2MB pages only when it is confident
that doing so would positively impact performance.

IV. DESIGN

We design and propose the Page-size Propagation Module
(PPM), the first µarchitectural scheme that propagates the
page size information to lower-level cache prefetchers and
enables safe prefetching beyond 4KB physical page bound-
aries when an accessed block resides in a large page (Section
IV-A). We show that PPM is compatible with any lower-
level cache prefetcher without implying any modification to
the underlying prefetcher’s implementation. For the rest of
the paper, we use Page Size Aware Prefetcher (Pref-PSA) to
refer to a prefetcher that exploits the PPM module.

We further capitalize on PPM’s benefits through the
design of a composite scheme that transparently integrates
large pages into the prefetcher’s design, providing additional
performance benefits at modest storage and logic costs.
Section IV-B presents in detail this composite scheme.

A. Page-size Propagation Module (PPM)
To address our analysis findings (Section III), we de-

sign the Page-size Propagation Module (PPM), an easily
implemented µarchitectural scheme that makes lower-level
cache prefetchers aware of the page size of the accessed
blocks, enabling safe prefetching beyond 4KB physical page
boundaries when the accessed block resides in a large page
(Findings 2 and 3, Section III-B). Practically, PPM augments
the cache MSHRs with one additional bit indicating the
page size of the corresponding accessed block. PPM does
not imply any modification to the underlying prefetcher’s
implementation nor any costly reverse virtual to physical
address translation (Finding 1, Section III-A).

We focus on prefetching applied at the L2C to describe
the design and the operation of PPM while presenting the
modifications required to propagate the page size informa-
tion to LLC prefetchers. We target L2C prefetching because
contemporary L2C prefetchers (i) store prefetched blocks
into the L2C or LLC depending on their internal confidence
mechanisms, and (ii) a prefetcher placed in the L2C has
a clearer view of the miss stream than an LLC prefetcher.
We do not target L1D prefetchers because (i) waiting for
the page size information upon TLB misses might harm
their timeliness since these prefetchers operate on L1D
accesses, as explained in Section III, and (ii) the L1D opts
for low-latency accesses, hindering the implementation of
sophisticated prefetchers (Sections II-C1 and III.)

pa
ge

 s
iz

e

Pref-PSA-2MB

Selection Logic

.

Csel

Pref-PSA Sets

Follower Sets

Pref-PSA-SD

if (current_set in Pref-PSA Sets)
 enable --> Pref-PSA
else if (current_set in Pref-PSA-2MB Sets)
 enable --> Pref-PSA-2MB

else{ // follower sets

 if (MSB(Csel) equals 0)
 enable --> Pref-PSA

 else
 enable --> Pref-PSA-2MB}

Pref-PSA-2MB Sets

L2C sets(A) (B) (C)

Pref-PSA

Figure 7. (A) L2C prefetching module comprised of two generic page size aware (PSA) prefetchers and adaptive logic that dynamically selects between
them, (B) selection logic implementation, (C) operation in pseudo-code. Pref-PSA (Pref-PSA-2MB) drives prefetching assuming 4KB (2MB) pages.

1) Implementation and Operation: The key idea behind
PPM is that first-level caches are typically implemented as
virtually indexed physically tagged (VIPT), thus upon an
L1D miss the page size of the missed block is available as
part of the address translation metadata.

In practice, on L1D misses PPM extracts the page size
information from the address translation metadata and prop-
agates it to the L1D MSHR. To do so, we augment each
L1D MSHR entry with one additional bit indicating the page
size of the missed block. Since L2C prefetchers are engaged
on L2C accesses, i.e., L1 misses, PPM propagates the page
size bit from the L1D MSHR to the L2C prefetcher via the
corresponding request’s stream, making the L2C prefetcher
aware of the page size (Pref-PSA).

Figure 6 illustrates the design and operation of a cache
hierarchy enhanced with PPM. In practice, upon an L1D
miss, PPM records the corresponding miss to the L1D
MSHR coupled with one more bit annotating the page size
of the corresponding block from the address translation
metadata. The page size bit is either 0 or 1, indicating
whether the corresponding missed block resides in a 4KB or
2MB page, respectively. Then, Pref-PSA takes the page size
bit as input and adjusts its prefetching strategy accordingly.
If the page size bit is 0, Pref-PSA stops prefetching at 4KB
boundaries since the block resides in a 4KB page. However,
if the page size bit is 1, Pref-PSA safely crosses 4KB
boundaries since it is aware that the block resides in a 2MB
page and stops prefetching at 2MB boundaries. Although
Pref-PSA may continue prefetching across 4KB boundaries
when the accessed blocks reside in 2MB pages, it continues
to index its internal prefetching structures using 4KB pages,
regardless of the page size, since PPM does not imply any
modification in the underlying prefetcher’s design.
Storage Overhead. PPM’s implementation requires just one
bit per L1D MSHR entry, assuming two concurrently sup-
ported page sizes (4KB pages and 2MB pages).
Additional Page Sizes. Although architectural support for
address translation is similar between different architectures
(x86, ARM, RISC-V), some implementations support more
than two page sizes. PPM is compatible with any number of
concurrently supported page sizes but would require more
bits stored in the L1D MSHR entries. Assuming N concur-
rently supported page sizes, PPM needs to additionally store

⌈log2 N⌉ bits on each L1D MSHR entry.

Operation on L1I Misses. Today, Linux transparently sup-
ports 2MB pages only for data, not for code. In addition,
mapping code into large pages using the hugetlbfs library
[77] might introduce security vulnerabilities [86], [89], [90].
For these reasons, this work considers that all instruction
pages are 4KB, and do not enhance the L1I MSHR with the
page size bit. We emphasize that this is not a limitation of
our design, but rather an implementation choice based on
the policies followed by modern systems. PPM can also be
used, without any modification, to propagate the page size
information to the L2C prefetching module upon L1I misses.

Applicability on LLC Prefetching. The procedure for propa-
gating the page size information to an LLC prefetcher is
similar to the one explained in Section IV-A1, but with
another propagation level. First, the L2C MSHR entries
should also store a bit annotating the page size. Second,
upon an L2C miss, the page size bit should be propagated
from the L1D MSHR to the L2C MSHR. Finally, the L2C
MSHR routes the page size bit to the LLC prefetcher.

B. Integrating Large Pages in the Design

This section builds on top of the PPM (Section IV-A)
and presumes that the page size information propagates to
the L2C prefetching module. In other words, it assumes the
placement of a generic Pref-PSA alongside L2C.

In this section, we show how to couple an existing Pref-
PSA with another page size aware version of the same
prefetcher that uses 2MB pages to drive prefetching; we
refer to this prefetcher as Pref-PSA-2MB. As explained
in Section III-C, integrating 2MB pages into the design
of an L2C prefetcher may positively or negatively impact
performance. To address this finding, we also implement a
smart and low-cost scheme that enables Pref-PSA-2MB only
when it is confident that doing so will positively impact
performance.

Figure 7 (A) depicts a high-level overview of our com-
posite design. The L2C prefetching module consists of (i)
two generic page size aware prefetchers, one inherently
using 4KB pages (Pref-PSA), similar to Section IV-A, and
another inherently using 2MB pages (Pref-PSA-2MB), and
(ii) adaptive selection logic, based on Set-Dueling [73],

that dynamically selects between Pref-PSA and Pref-PSA-
2MB. We refer to this composite design as Page Size Aware
Prefetcher with Set Dueling (Pref-PSA-SD).

1) Design of Pref-PSA-2MB: We transparently integrate
the notion of 2MB pages into any L2C prefetcher design
by targeting its internal prefetching structures indexed with
the physical page number (if any). The only modification
necessary is that we require these structures to be indexed
using 2MB pages, no matter the size of the page where the
accessed block resides. Although Pref-PSA-2MB assumes
2MB pages for indexing its internal structures, prefetching is
permitted within the page where the trigger block resides to
avoid opening side-channels (Section II-C). If the prefetcher
has no structure indexed with the physical page number,
Pref-PSA-2MB is equivalent to Pref-PSA. Note that Pref-
PSA-2MB uses predicted deltas that range between -32768
and +32768 since it assumes only 2MB pages. Therefore,
Pref-PSA-2MB may, or may not, capture patterns that Pref-
PSA captures, as explained in Section III-C.

2) Selection Logic: To address our last analysis finding
and agilely select between Pref-PSA and Pref-PSA-2MB, we
implement a scheme based on Set Dueling [73], a technique
originally invented to select between different replacement
policies within a cache. Our selection logic (Figure 7 (B))
consists of a single saturating counter, Csel, that reflects
which prefetcher to enable for the current access. We train
both Pref-PSA and Pref-PSA-2MB on all L2C accesses since
training each prefetcher only when it is selected results in
insufficient training.

In practice, the selection logic clusters the L2C sets into
three categories: sets dedicated to Pref-PSA, sets dedicated
to Pref-PSA-2MB, and follower sets dynamically assigned
to the most accurate prefetcher between Pref-PSA and Pref-
PSA-2MB. We dedicate a small fraction of the total L2C
sets to the two competing prefetchers to avoid negatively
impacting performance when one of the prefetchers harms
performance. Empirically, we find that 32 sets are adequate
for each prefetcher, similar to prior work [73]. To make
our Set Dueling based scheme work for prefetching, we use
one bit per L2C block to annotate which prefetcher (Pref-
PSA or Pref-PSA-2MB) issued the prefetch to ensure correct
updating of Csel. This bit is required because the prefetched
block may not be stored in the same set as the trigger block.5

The annotation bit implies 1KB extra storage for a 512KB
L2C which is affordable for realistic implementations.

3) Pref-PSA-SD Operation: Pref-PSA-SD monitors the
efficacy of each prefetcher by marking prefetched blocks
based on the issuing prefetcher. Upon an L2C access, Pref-
PSA or Pref-PSA-2MB issues prefetches for the current
access based on whether or not the accessed block belongs

5This is not the case for cache replacement policies [73] because the
cache replacement function domain is a single set.

Component Configuration

CPU Core 1-8 cores, 4GHz, 352-entry ROB, 4-wide

L1 ITLB/DTLB 64-entry, 4-way, 1-cycle, 8-entry MSHR

L2 TLB 1536-entry, 12-way, 8-cycle, 16-entry MSHR

L1 ICache 32KB, 8-way, 4-cycle, 8-entry MSHR

L1 DCache 48KB, 12-way, 5-cycle, 16-entry MSHR

L2 Cache 512KB, 8-way, 10-cycle, 32-entry MSHR

32 sets for Pref-PSA/Pref-PSA-2MB, 3-bit Csel

LLC (per core) 2MB, 16-way, 20-cycle, 64-entry MSHR

DRAM 8GB (single-core), 32GB (multi-core), 3200MT/s

Branch Predictor hashed perceptron [91]

Table I
SYSTEM CONFIGURATION.

to either prefetchers’ sample set. If the corresponding block
does not belong to either prefetcher’s sample sets, Csel
selects which prefetcher should be enabled. If the Most Sig-
nificant Bit (MSB) of Csel is 0, Pref-PSA issues prefetches
for the current access. Otherwise, Pref-PSA-2MB generates
prefetches for the current access. The operation of Pref-PSA-
SD is also illustrated with pseudo-code in Figure 7 (C).

To update Csel, Pref-PSA-SD takes into account the useful
prefetches of the two competing prefetchers by looking at
the annotation bit (Section IV-B2). Specifically, a cache
hit due to a prefetch issued by Pref-PSA (Pref-PSA-2MB)
decrements (increments) Csel by one. Empirically, we found
that three bits for Csel are adequate to identify the most
useful cache prefetcher per execution phase dynamically.

Finally, no matter which prefetcher is activated, we let
both Pref-PSA and Pref-PSA-2MB train on all L2C accesses
and adjust their prefetching strategy accordingly. Training
each prefetcher only when it is selected, as Set Dueling
implies when used for cache replacement policies [73],
provides poor performance gains due to insufficient training
and false pattern observation, as we show in Section VI-B3.

V. METHODOLOGY

A. Performance Model

We evaluate our proposals using the ChampSim simulator
[88], modeling a 4-wide out-of-order processor and a three-
level cache hierarchy, similar to prior work [14], [16]. We
model 1-core, 4-core, and 8-core out-of-order machines with
64-byte blocks. Table I presents our experimental setup.

Prefetching is applied upon L2C accesses with prefetched
blocks placed into the L2C or LLC, depending on the L2C
prefetcher’s confidence. There is no prefetching at the L1
caches, and all cache levels use the LRU replacement policy.

g
cc

b
w

a
v
e
s

m
cf

m
ilc

ca
ct

u
s

le
sl

ie
3

d
g

o
b

m
k

so
p
le

x
h
m

m
e
r

G
e
m

sF
D

T
D

lib
q
u
a
n
tu

m
lb

m
o
m

n
e
tp

p
a
st

a
r

w
rf

sp
h
in

x
3

g
cc

_s
b

w
a
v
e
s_

s
m

cf
_s

ca
ct

u
B

S
S

N
_s

lb
m

_s
o
m

n
e
tp

p
_s

w
rf

_s
x
a
la

n
cb

m
k_

s
x
2

6
4

_s
ca

m
4

_s
p

o
p

2
_s

le
e
la

_s
fo

to
n
ik

3
d

_s
ro

m
s_

s
x
z_

s
b

fs
.r

o
a
d

cc
.r

o
a
d

b
c.

ro
a
d

ss
sp

.r
o
a
d

tc
.r

o
a
d

p
r.

ro
a
d

d
a
ta

_c
a
ch

in
g

g
ra

p
h
_a

n
a
ly

ti
cs

m
lp

a
ck

_c
f

sa
t_

so
lv

e
r

q
m

m
_i

n
t_

3
1

5
q

m
m

_f
p

_1
2

q
m

m
_i

n
t_

3
4

5
q

m
m

_i
n
t_

3
9

8
q

m
m

_f
p

_8
7

q
m

m
_i

n
t_

7
6

3
q

m
m

_f
p

_4
q

m
m

_f
p

_8
q

m
m

_f
p

_9
6

q
m

m
_f

p
_1

q
m

m
_f

p
_6

5
q

m
m

_i
n
t_

9
0

6
q

m
m

_f
p

_9
5

q
m

m
_f

p
_6

7
q

m
m

_f
p

_1
3

3
q

m
m

_f
p

_1
5

q
m

m
_f

p
_1

4
q

m
m

_f
p

_1
3

6
q

m
m

_f
p

_4
8

q
m

m
_f

p
_5

q
m

m
_f

p
_7

q
m

m
_f

p
_1

0
1

q
m

m
_f

p
_4

5
q

m
m

_f
p

_3
0

q
m

m
_f

p
_1

3
9

q
m

m
_f

p
_1

0
5

q
m

m
_f

p
_1

2
8

q
m

m
_f

p
_7

1
q

m
m

_f
p

_5
1

q
m

m
_f

p
_1

1
1

q
m

m
_f

p
_1

1
0

q
m

m
_f

p
_6

q
m

m
_f

p
_1

3
4

q
m

m
_i

n
t_

8
5

9
q

m
m

_f
p

_1
3

0
q

m
m

_f
p

_1
1

6
q

m
m

_f
p

_1
1

2
q

m
m

_f
p

_1
2

7
q

m
m

_i
n
t_

2
1

G
e
o
M

e
a
n10

5

0

5

10

15

20

25

30

35

40

45

50

55

S
p

e
e
d
u
p

 (
%

)

SPP-PSA SPP-PSA-2MB SPP-PSA-SD
91.2 90.2 68.1

-10.5 -14.3 -67.4 -17.2 -21.7 -14.3 -32.6 -25.4 -25.1 -19.7 -11.3 -10.1

Figure 8. Performance comparison between different page size aware (PSA) versions of the SPP prefetcher. The speedups are computed over the original
implementation of SPP that considers only 4KB pages and stops prefetching at 4KB physical page boundaries [14].

Prior work on spatial prefetching for the lower-level
caches is limited to 4KB physical page boundaries [3].
However, modern OSes provide support for large pages,
as explained in Sections II-B1 and III-B. Thus, we extend
ChampSim to concurrently support both 4KB and 2MB
pages since the Linux Transparent Huge Pages (THP) mech-
anism [60] provides automatic and transparent support only
for 2MB large pages (Section II-B1). Mapping data into
1GB large pages requires manually using the libhugetlbfs
[77] since THP does not transparently support 1GB pages.
For these reasons, our evaluation considers a system that
concurrently supports 4KB and 2MB pages.

We verify that our infrastructure accurately simulates
multiple page sizes by measuring the usage of 4KB and
2MB pages for all SPEC CPU 2006 [67], SPEC CPU 2017
[68], and GAP [69] benchmarks, presented in Section V-B,
using the page-collect tool [87] on an Intel Xeon E5-2687W
machine and compare them with the corresponding usages
on our simulation infrastructure. Our experiments reveal that
real systems heavily use 2MB pages (on average 85% of
the total allocated memory is mapped to 2MB pages across
the considered workloads in our system), as also shown
in Section III-B. Additionally, our infrastructure simulates
multiple page sizes within only 1.8% error compared to the
real system measurements for the considered workloads.

1) Constrained Evaluation: We test our proposals under
different DRAM bandwidth configurations that roughly cor-
respond to three commercial processors (Intel Xeon Gold
[70], AMD EPYC [92], and AMD Threadripper [93]), sim-
ilar to [27]. Moreover, we evaluate scenarios that consider
different entries in the L2C MSHR and different LLC sizes.
Section VI-B4 evaluates these scenarios. The multi-core
evaluation uses the default configuration (Table I).

B. Workloads

We consider an extensive and diverse set of workloads
to evaluate our proposals. Specifically, we use all workloads
from SPEC CPU 2006 [67] and SPEC CPU 2017 [68] suites,
big data workloads included in the GAP suite [69] using
the road input graph, scale-out applications from Cloud-
Suite [39], a machine learning workload (mlpack [71]), and
industrial workloads provided by Qualcomm (QMM) for
CVP1 [72]. Workloads with an LLC MPKI of at least 1
are considered memory-intensive and thus considered in our
evaluation. Overall, our evaluation considers 195 different
traces spanning 80 workloads. All traces were obtained using
the SimPoint [94] methodology, and our evaluation reports
the weighted mean speedups achieved per application.

Single-core Performance. All SPEC, GAP, CloudSuite,
and machine learning workloads run the first 250M instruc-
tions to warm up the µarchitectural structures and 250M
instructions are executed to obtain the experimental results.
For the QMM workloads, we use 50M warm-up instructions
and 100M instructions for gathering results [95].

Multi-core Experiments. We randomly generate 100 mixes
from our workload set for multi-core evaluation. Both 4-
core and 8-core evaluations use the same number of warm-
up and simulation instructions as the single-core exper-
iments. We report the weighted speedup over the base-
line to obviate speedup overestimation due to applications
with high IPC [16], [96]. For each application running on
a core, we compute the IPC on the multi-core context
and the IPC in isolation on a system with the multi-core
specs. Then, we compute the weighted IPC as the sum of
(IPCmulticore/IPCisolation) for all workloads in the mix. Finally,
we normalize this sum with the weighted IPC of the baseline.

VI. EVALUATION

A. Considered Prefetchers

This section highlights our proposals’ versatility by apply-
ing the proposed page size exploitation techniques (Section
IV) on a set of four state-of-the-art spatial L2C prefetchers:
Signature Path Prefetcher (SPP) [14], Variable Length Delta
Prefetcher (VLDP) [15], Perceptron-based Prefetch Filtering
(PPF) [16], and Best Offset Prefetcher (BOP) [17]. We also
consider the Instruction Pointer Classifier Prefetcher (IPCP)
[83] in Section VI-B5 to compare against state-of-the-art
L1D prefetching.6

B. Single Core Experiments

1) Performance: This section quantifies the single-core
performance benefits of making the L2C prefetching module
aware of the page size by using the PPM scheme (Section
IV-A), while illustrating the source of these benefits. Specif-
ically, we quantify the performance gains of (i) the page size
aware (PSA) versions of the considered L2C prefetchers
(Section IV-A), (ii) the page size aware versions of the
L2C prefetchers that inherently use 2MB pages to index
their structures (PSA-2MB), presented in Section IV-B,
and (iii) the composite scheme (PSA-SD) that dynamically
enables the most appropriate between the PSA and PSA-
2MB versions of the L2C prefetcher (Section IV-B).

Starting with the SPP prefetcher, Figure 8 reports the
speedups of SPP-PSA, SPP-PSA-2MB, and SPP-PSA-SD
over the original SPP implementation that is not aware
of the page size, thus it stops prefetching at 4KB page
boundaries, across all considered workloads. Overall, SPP-
PSA, SPP-PSA-2MB, and SPP-PSA-SD improve geomean
performance over the original SPP by 5.5%, 3.0%, and 8.1%,
respectively. The main takeaways of this experiment are:

• SPP-PSA greatly improves performance over SPP
original across the vast majority of the considered work-
loads (e.g., GemsFDTD, fotonik3d_s, qmm_fp_95).
This happens because SPP-PSA exploits PPM to safely
cross 4KB boundaries when a block resides in a 2MB page,
resulting in better coverage and timeliness than SPP original.

• SPP-PSA-2MB behaves differently across different
applications; for some workloads it greatly outperforms
SPP original (e.g., milc, qmm_fp_67) while for others it
degrades performance (e.g., cactus, tc.road), corrobo-
rating our last analysis finding (Finding 4, Section III-C). We
observe such behavior due to the SPP-PSA-2MB’s intrinsic
properties (Section III-C): (i) SPP-PSA-2MB indexes the
internal prefetching structures with 2MB pages that provides
a coarser representation of the access patterns than indexing
with 4KB pages and less aliasing in the prediction tables, and
(ii) SPP-PSA-2MB considers more strides for prefetching

6We evaluate two IPCP versions; IPCP original that prefetches for intra-
4KB patterns and another IPCP version that crosses 4KB page boundaries.

S
P
E
C

G
A

P
+

M
L

+
C

LO
U

D

Q
M

M

A
LL

S
P
E
C

G
A

P
+

M
L

+
C

LO
U

D

Q
M

M

A
LL

S
P
E
C

G
A

P
+

M
L

+
C

LO
U

D

Q
M

M

A
LL

S
P
E
C

G
A

P
+

M
L

+
C

LO
U

D

Q
M

M

A
LL

3

0

3

6

9

12

G
e
o
M

e
a
n
 S

p
e
e
d
u
p
 (

%
)

SPP VLDP PPF BOP

PSA PSA-2MB PSA-SD

Figure 9. Performance comparison between the PSA, PSA-2MB, and
PSA-SD versions of state-of-the-art L2C prefetchers, across all considered
benchmark suites. The speedups are computed over the original implemen-
tation of the corresponding prefetcher, similar to Figure 8.

than SPP-Pref-PSA (SPP-PSA-2MB uses strides ranging
between -32768 and +32768 while SPP-PSA uses strides
ranging between -64 and +64, as explained in Section
III-C). Therefore, for workloads like milc, SPP-PSA-2MB
outperforms SPP-PSA because it (i) does not suffer from
aliasing in the prediction table, and (ii) uses strides larger
than 64 that manage to detect patterns that SPP-PSA fails
at finding due to only considering deltas smaller than 64.
However, for benchmarks like tc.road, SPP-PSA-Magic-
2MB degrades performance over SPP original and SPP-
PSA because indexing its internal structure with 2MB pages
erroneously generalizes different access patterns experienced
by different 4KB pages residing in the same 2MB memory
block into the same prefetching structure entry. In other
words, indexing with 4KB pages, regardless of whether
the block resides in a 2MB page, is sometimes better than
indexing with 2MB pages; this is the case for workloads
with 4KB-grain address patterns. The main takeaway is
that the SPP-PSA-2MB may positively or negatively impact
performance, depending on the workload, motivating the
design of the SPP-Pref-PSA-SD module.

• SPP-PSA-SD provides the overall best performance
gains over SPP original because it accurately enables the
most appropriate prefetcher between SPP-PSA and SPP-
PSA-2MB. For benchmarks like milc and qmm_fp_67,
SPP-PSA-SD identifies that SPP-PSA-2MB is more ef-
fective than SPP-PSA and primarily enables SPP-PSA-
2MB. In contrast, SPP-PSA-SD consistently enables SPP-
PSA for benchmarks like sphinx3, pr_road, and
qmm_fp_12 since it identifies that SPP-PSA-2MB does not
provide useful prefetches for these benchmarks. Notably,
we observe that for some workloads (e.g., qmm_fp_87,
cactuBSSN_s) SPP-PSA-SD offers better performance
than its best performing prefetcher as these workloads
benefit from enabling different prefetchers across different
execution phases.

GeoMean
0

10
20
30
40
50

S
p

e
e
d

u
p

 (
%

) 90.2

Mean
20

0

20

40

A
cc

e
ss

 L
a
te

n
cy

R
e
d

u
ct

io
n
 (

%
)

Mean
20

0

20

40

C
o
v
e
ra

g
e
 (

%
)

bwaves milc

GemsFDTD
astar

gcc_s
cactus_s

fotonik3d_s
pr.ro

ad

graph_analytics

qmm_fp_15

qmm_int_906

qmm_fp_67

qmm_fp_95

qmm_fp_112
Mean

20

0

20

40

A
cc

u
ra

cy
 (

%
)

SPP-PSA SPP-PSA-SD L2C LLC

Figure 10. Impact of PSA and PSA-SD versions of SPP on performance, L2C/LLC access latency, L2C/LLC miss coverage, and L2C/LLC prefetching
accuracy. All results are computed over the original implementation of SPP. For all considered metrics higher is better.

For workloads operating mainly on 4KB pages
(e.g., soplex, hmmer, omnetpp, gcc_s,
graph_analytics) SPP-PSA and SPP-PSA-SD
merely improve performance over SPP original because
there exist only a few opportunities for safely crossing 4KB
pages since these workloads do not use many 2MB pages.
Interestingly, SPP-PSA-2MB harms performance for these
workloads by erroneously generalizing access patterns to
different 4KB pages within the same 2MB memory block
into the same prefetching structure entry, thus using the
same prefetch deltas.

Additional Prefetchers. To demonstrate that our page size
exploitation techniques benefit any spatial lower-level cache
prefetcher, we consider the VLDP, PPF, and BOP L2C
prefetchers (Section VI-A) and evaluate their original imple-
mentation as well as their PSA, PSA-2MB, and PSA-SD ver-
sions. Figure 9 presents the geomean speedups of the PSA,
PSA-2MB, and PSA-SD versions of SPP, VLDP, PPF, and
BOP across the considered benchmark suites coupled with a
geomean across all workloads. The speedups are computed
over the original versions of the considered prefetchers,
similar to Figure 8. For example, the speedups of the VLDP-
PSA/VLDP-PSA-2MB/VLDP-SD are computed over VLDP
original that considers only 4KB pages and stops prefetching
at 4KB physical page boundaries.

Overall, the results reported in Figure 9 drive conclusions
consistent with the ones reported for the SPP prefetcher

in Figure 8: (i) the PSA version of all prefetchers greatly
improves performance over the original versions across all
considered benchmark suites (e.g., VLDP-PSA improves
geomean performance over VLDP original by 3.0% for the
QMM workloads), (ii) the PSA-2MB version provides mod-
est performance gains because it improves or degrades per-
formance depending on the workload (e.g., PPF-PSA-2MB
improves (degrades) performance for the QMM (SPEC)
workloads by 2.1% (1.3%)), and (iii) the PSA-SD version
provides the best speedups since the selection logic enables
the most appropriate prefetcher between PSA and PSA-2MB
(e.g., PPF-PSA-SD outperforms PPF original by 5.1% across
all workloads). Finally, all BOP versions (PSA, PSA-2MB,
PSA-SD) provide the same speedups because BOP does not
use any structure indexed with the page size (Section IV-B),
causing BOP-PSA-2MB to degenerate to BOP-PSA. Thus
BOP’s PSA, PSA-2MB, and PSA-SD versions are identical.

Non-Intensive Workloads. To quantify the impact of our
proposals on less memory-intensive workloads, we tem-
porarily augment our workload set with all SPEC 2006
and SPEC 2017 workloads no matter their cache MPKI
rates, and evaluate all considered prefetchers coupled with
all page size exploitation techniques. Across all considered
workloads (intensive plus non-intensive), the (PSA, PSA-
2MB, PSA-SD) versions of SPP, VLDP, PPF, and BOP
improve geomean performance over their original versions
by (4.1%, 2.2%, 6.1%), (1.7%, -0.3%, 3.3%), (3.4%, 0.2%,

SPP VLDP PPF
0

2

4

6

8

10

G
e
o
M

e
a
n

S
p

e
e
d

u
p

 (
%

)

SD-Standard

SD-Page-Size

SD-Proposed

ISO Storage

Figure 11. Performance comparison between different implementations of
the selection logic of the considered prefetchers’ PSA-SD versions.

3.8%), and (1.6%, 1.6%, 1.6%), respectively. All BOP
versions provide the same speedups because BOP does not
use any structure indexed with the page size (Section IV-B).
The speedups are slightly lower than the ones reported when
considering only the memory-intensive workloads (Figure
9) because some non-intensive SPEC workloads lower the
reported geomean speedups. In addition, we observe that our
proposals do not harm the performance of the non-intensive
workloads. The main takeaway of this experiment is that
page size aware lower-level prefetching provides significant
benefits for memory-intensive workloads without negatively
impacting the performance of non-intensive workloads.

2) Sources of Performance Enhancements: This section
justifies the benefits delivered by the proposed page size
exploitation techniques (PSA, PSA-SD). This section does
not analyze the PSA-2MB version of the prefetchers since
it is part of the PSA-SD design that dynamically selects
between the PSA and PSA-2MB versions of the prefetchers.

Figure 10 considers different metrics to explain the per-
formance gains of our proposals on the SPP prefetcher.
Specifically, we use the following metrics: (i) cache access
latency (in cycles) to quantify the impact of our proposals on
prefetching timeliness (better prefetching timeliness reduces
cache access latency), (ii) miss coverage, and (iii) prefetch-
ing accuracy. Moreover, we compute these metrics for the
L2C and LLC since SPP directs prefetches in both caches,
depending on its internal confidence mechanism. Finally, for
this set of experiments, we consider some representative
workloads across all considered benchmark suites plus an
average across all considered workloads (Mean in Figure
10) for readability. Note that all metrics are computed over
the original SPP version, similar to Section VI-B1.

Looking at Figure 10 we observe that the performance
gains of our proposals (PSA, PSA-SD) do not have a single
root (e.g., higher coverage). The speedups of SPP-PSA and
SPP-PSA-SD are caused by positively impacting different
metrics, depending on the workload. This is the reason why
looking only at the reported averages across 80 workloads
does not provide a clear understanding.

For example, SPP-PSA provides modest speedups for
the milc benchmark, whereas SPP-PSA-SD provides mas-

sive speedups for this benchmark due to SPP-PSA-SD
enabling the SPP-PSA-2MB prefetcher for this workload,
as explained in Section VI-B1. SPP-PSA provides modest
speedups for milc because it improves prefetching time-
liness by significantly reducing the L2C and LLC access
latency costs while providing higher prefetching accuracy,
at the cost of slightly reducing L2C prefetching coverage.
Regarding the speedup of SPP-PSA-SD for milc bench-
mark, we observe that it provides a large coverage increase
(∼10% for L2C and ∼22% for LLC) coupled with higher
prefetching accuracy (∼10% for L2C and ∼10% LLC) while
reducing the L2C access latency by almost 40%. We observe
a slight increase in LLC access latency because most of the
LLC misses have been eliminated, and the remaining misses
result in cold DRAM accesses. Similar behavior is observed
for other workloads like GemsFDTD and qmm_fp_112.

For workloads like bwaves, fotonik3d_s, and
pr_road, SPP-PSA and SPP-PSA-SD provide similar
speedups because SPP-PSA-SD mainly enables SPP-PSA
since SPP-PSA-2MB is not helpful for these workloads. As
a result, SPP-PSA and SPP-PSA-SD have almost the same
impact in the metrics presented in Figure 10. For this group
of workloads both SPP-PSA and SPP-PSA-SD significantly
reduce L2C and LLC access latencies because they experi-
ence better prefetching timeliness than SPP original while
providing a slight increase in coverage and accuracy.

Looking at the impact of SPP-PSA and SPP-PSA-
SD on workloads like qmm_fp_15, qmm_fp_67, and
qmm_fp_95, we observe large speedups over SPP original.
In addition, SPP-PSA-SD outperforms SPP-PSA since it
enables SPP-PSA-2MB in specific execution phases. For
these workloads, both SPP-PSA and SPP-PSA-SD experi-
ence an accuracy increase up to 10% for both L2C and
LLC, a slight L2C coverage increase (<10%), a massive
LLC coverage increase (>13%), a massive reduction in L2C
access latency due to better prefetching timeliness, and a
small increase in LLC latency, because most LLC misses
have been eliminated thus the remaining misses result in
cold DRAM accesses.

For workloads like gcc_s, graph_analytics, and
qmm_int_906 both SPP-PSA and SPP-PSA-SD merely
improve performance over SPP original because these work-
loads mainly operate on 4KB pages, thus there is no potential
for high performance gains. Consequently, they have a small
impact on the metrics of Figure 10, and the proposed page
size exploitation techniques merely improve their perfor-
mance, as shown in Figure 8.

Finally, Figure 10 focuses on SPP to illustrate the sources
of performance enhancements of the proposed page size
exploitation schemes. We observe similar behavior for the
rest of the evaluated prefetchers (VLDP, PPF, BOP).

3) Different Selection Logic Implementations: This sec-
tion highlights the benefits of the proposed selection logic

SPP VLDP PPF BOP0
2
4
6
8

10

G
e
o
M

e
a
n

S
p

e
e
d

u
p

 (
%

)
8-entry

16-entry

32-entry

64-entry

128-entry

PSA

PSA-SD

SPP VLDP PPF BOP

(A) (B)

256KB

512KB

1MB

2MB

PSA

PSA-SD

SPP VLDP PPF BOP

400 MT/s

800 MT/s

1600 MT/s

3200 MT/s

6400 MT/s

PSA

PSA-SD

(C)

Figure 12. Impact of L2C MSHR size (A), LLC size (B), and DRAM bandwidth (C) on the performance of the PSA and PSA-SD versions of the
considered L2C prefetchers. Results are computed over the original implementations of the considered L2C prefetchers.

(Section IV-B) by comparing it against alternative imple-
mentations. Specifically, Figure 11 presents the geomean
speedups of the PSA-SD versions of all considered L2C
prefetchers, across three different selection logic implemen-
tations: (i) original implementation of Set-Dueling [73] that
trains the PSA and PSA-2MB only when they are selected
(SD-Standard), (ii) page size based selection scheme (SD-
Page-Size) where the selection logic blindly enables the PSA
(PSA-2MB) version of the prefetcher when the accessed
block resides in a 4KB page (2MB page), and (iii) the pro-
posed selection logic implementation (SD-Proposed). More-
over, we consider an ISO storage scenario that doubles the
storage budget of the original prefetchers’ implementations
to match the budget of the PSA-SD versions and the cost
of the annotation bit (Section IV-B2). Prefetcher BOP is
excluded from this experiment since BOP-PSA and BOP-
PSA-SD are the same, as shown in Section VI-B1. Finally,
the speedups are computed over the original versions of the
considered L2C prefetchers, similar to Figure 9.

Figure 11 reveals that SD-Proposed provides the overall
highest speedups across all prefetchers (e.g., SD-Proposed
outperforms the other selection logic implementations by up
to 6.4% for SPP). In addition, we observe that SD-Standard
provides lower speedups than SD-Proposed; this happens
because SD-Standard trains the PSA and PSA-2MB versions
of the prefetchers only when they are selected, whereas SD-
Proposed trains both prefetchers across all accesses. More-
over, we find that SD-Page-Size provides good speedups
but still performs worse than SD-Proposed. We observe
such behavior because indexing the internal structures of
the prefetchers with 2MB pages sometimes losses important
information due to coarser representation of patterns, leading
to sub-optimal prefetching decisions. In other words, blindly
considering the page size to enable one of the PSA and PSA-
2MB versions is seldom beneficial. Sometimes it is better to
assume 4KB (2MB) pages for indexing the internal prefetch-
ing structures even if the accessed block resides in a 2MB
(4KB) page.7 This happens when 2MB pages accommodate
data structures with orthogonal memory access patterns; in
these cases, the prefetcher is more effective at capturing

7No matter which page size is considered for indexing, prefetching is
permitted within the page where the accessed block resides.

NL
IPC

P

IPC
P+

+

SPP
-P

SA

SPP
-P

SA-S
D

VLD
P-

PS
A

VLD
P-

PS
A-S

D

PP
F-

PS
A

PP
F-

PS
A-S

D

BOP-
PS

A

BOP-
PS

A-S
D

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

S
p
e
e
d
u
p

L1D Pref. L2C Pref.

Figure 13. Comparison with state-of-the-art L1D prefetching.

the memory access patterns of the different structures by
internally considering 4KB pages since fewer data structures
are clustered within one 4KB page than a 2MB page. Finally,
the ISO storage scenario’s speedups reveal that doubling the
prefetchers’ size merely improves performance.

4) Constrained Evaluation: This section quantifies the
impact of various constraints on the performance of the
PSA and PSA-SD versions of all considered prefetchers.
Figure 12 presents the impact on geomean performance
for various L2C MSHR sizes, LLC sizes, and DRAM
bandwidths roughly corresponding to various commercial
processors (Section V-A1). The speedups are computed over
the prefetchers’ original versions, similar to Section VI-B1.

Results presented in Figure 12 (A) and (B) reveal that no
matter the L2C MSHR size and the LLC capacity the PSA
and the PSA-SD versions of all considered prefetchers con-
sistently provide large speedups over the original versions
of the prefetchers. For instance, even when the L2C MSHR
has 8 entries, SPP-PSA and SPP-PSA-SD improve geomean
speedup over SPP original by 4.6% and 6.4%, respectively.

Regarding the impact of DRAM bandwidth (Figure 12,
C) on the speedups of our proposals, we observe that the
PSA and PSA-SD versions of the prefetchers consistently
improve performance over their original versions, even when
DRAM bandwidth is 400 MT/s. The main takeaway of this
evaluation is that exploiting the page size information to
safely prefetch across 4KB physical page boundaries pro-
vides large gains even in bandwidth-constrained scenarios.

5) Comparison with L1D Prefetching: This section com-
pares the PSA and PSA-SD versions of all considered

SPP-PSA

SSP-PSA-SD

VLDP-PSA

VLSP-PSA-SD
PPF-PSA

PPF-PSA-SD

BOP-PSA
5
0
5

10
15
20
25
30
35

S
p
e
e
d
u
p
 (

%
)

GeoMean

Figure 14. Distribution of 4-core speedups of the PSA and PSA-SD
versions of the considered prefetchers across 100 mixes.

L2C prefetchers with the Instruction Pointer Classifier
Prefetcher (IPCP) [83] which is a state-of-the-art L1D
prefetcher. We evaluate two versions of IPCP: the first
(IPCP) stops prefetching at 4KB page boundaries, and the
second (IPCP++) is allowed to cross 4KB page boundaries
for prefetching only when the page where the prefetched
block resides is TLB resident (Section II-C1). Both IPCP
and IPCP++ apply prefetching using virtual addresses since
they are placed alongside L1D. We also evaluate a next-line
prefetcher for reference. Figure 13 presents the speedups of
the considered prefetchers across all workloads. The baseline
system does not use prefetching at any cache level.

Looking at Figure 13, we observe that the version of IPCP
that crosses 4KB page boundaries (IPCP++) delivers higher
speedup (4.6% in geomean) than IPCP that stops prefetching
at 4KB page boundaries. This happens because IPCP++
experiences higher coverage and better timeliness than IPCP
due to 4KB-crossing prefetching. However, the PSA and
PSA-SD versions of SPP and PPF outperform both IPCP
and IPCP++. For example, SPP-PSA-SD and PPF-PSA-SD
provide 9.0% (4.4%) and 24.6% (20.0%) higher speedups
than IPCP (IPCP++), respectively. In addition, the versions
of VLDP and BOP that exploit the page size information
provide speedups slightly lower than IPCP and IPCP++.
The main takeaway of this experiment is that page size
aware L2C prefetching delivers equal or higher performance
enhancement than state-of-the-art L1D prefetching.

C. Multi-Core Experiments

This section presents the performance benefits delivered
by our proposals (PSA, PSA-SD) to all considered L2C
prefetchers in multi-core contexts. Figures 14 and 15 illus-
trate the distribution of the speedups of the PSA and PSA-SD
versions, across the SPP, VLDP, PPF, and BOP prefetchers,
in a 4-core and an 8-core context, respectively. Both 4-core
and 8-core experiments use 100 random mixes, as explained
in Section V-B. Finally, the speedups reported in Figures
14 and 15 are computed over the original versions of the
prefetchers, similar to Section VI-B1.

Our multi-core evaluation reveals that both PSA and PSA-
SD versions of all considered L2C prefetchers provide large
performance benefits for most of the 4-core and 8-core

SPP-PSA

SSP-PSA-SD

VLDP-PSA

VLSP-PSA-SD
PPF-PSA

PPF-PSA-SD

BOP-PSA
5

0

5

10

15

S
p
e
e
d
u
p
 (

%
)

GeoMean

Figure 15. Distribution of 8-core speedups of the PSA and PSA-SD
versions of the considered prefetchers across 100 mixes.

mixes. For example, SPP-PSA and SPP-PSA-SD provide
a geomean speedup of 5.6% and 7.7% over SPP original
across 100 randomly generated 4-core mixes. However,
in the 8-core context, we observe that PSA and PSA-SD
versions of all the prefetchers deliver lower performance
enhancements than in the 4-core context. This happens
because both 4-core and 8-core evaluations use the same
DRAM configuration (Table I in Section V). Therefore, there
is less opportunity for improvement by exploiting the page
size information for prefetching in the 8-core context due to
limited bandwidth compared to the 4-core context.

VII. CONCLUSIONS

This paper proposes the Page-size Propagation Module
(PPM), a µarchitectural scheme that exploits the prevalence
of large pages in systems to enable safe prefetching beyond
4KB physical page boundaries when the accessed blocks
reside in large pages. In addition, we propose a module
comprised of two page size aware prefetchers that inherently
use different page sizes to drive prefetching while using
adaptive logic to enable the most appropriate prefetcher per
cache access. Across an extensive set of workloads, we show
that the proposed page size exploitation techniques provide
significant benefits to various state-of-the-art prefetchers.

VIII. ACKNOWLEDGEMENTS

The authors are grateful to the MICRO 2022 reviewers
for their comments that improved the quality of the paper.
This work is supported by the Spanish Ministry of Science
and Technology through the PID2019-107255GB project,
the Generalitat de Catalunya (contract 2017-SGR-1414),
the European Union Horizon 2020 research and innovation
program under grant agreement No 955606 (DEEP-SEA EU
project), the National Science Foundation through grants
CNS-1938064 and CCF-1912617, and the Semiconductor
Research Corporation project GRC 2936.001. Georgios
Vavouliotis has been supported by the Spanish Ministry of
Economy, Industry, and Competitiveness and the European
Social Fund under the FPI fellowship No. PRE2018-087046.
Marc Casas has been partially supported by the Grant RYC-
2017-23269 funded by MCIN/AEI/10.13039/501100011033
and ESF ‘Investing in your future’.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Im-
plications of the obvious,” SIGARCH Computer Architecture
News, vol. 23, 1995.

[2] S. A. McKee, “Reflections on the memory wall,” in Proceed-
ings of the 1st Conference on Computing Frontiers, 2004.

[3] S. Mittal, “A survey of recent prefetching techniques for
processor caches,” ACM Computing Surveys, vol. 49, 2016.

[4] D. Suggs, M. Subramony, and D. Bouvier, “The AMD “Zen
2” Processor,” IEEE Micro, vol. 40, 2020.

[5] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu,
“Knights landing: Second-generation intel xeon phi product,”
IEEE Micro, vol. 36, 2016.

[6] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield,
K. Sugavanam, P. Coteus, P. Heidelberger, M. Blumrich,
R. Wisniewski, a. gara, G. Chiu, P. Boyle, N. Chist, and
C. Kim, “The ibm blue gene/q compute chip,” IEEE Micro,
vol. 32, 2012.

[7] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A.
Jiménez, T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum,
V. Sinha, and A. Ghiya, “Evolution of the samsung exynos
cpu microarchitecture,” in Proceedings of the 47th Interna-
tional Symposium on Computer Architecture, 2020.

[8] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo,
“The ibm system/360 model 91: Machine philosophy and
instruction-handling,” IBM Journal of Research and Devel-
opment, vol. 11, 1967.

[9] R. P. Case and A. Padegs, “Architecture of the ibm sys-
tem/370,” Commun. ACM, vol. 21, 1978.

[10] Levinthal D., “Performance analysis guide for Intel
Core i7 processor and Intel Xeon 5500 processors.”
https://www.intel.com/content/dam/develop/external/us/en/
documents/performance-analysis-guide-181827.pdf.

[11] D. Sager, D. P. Group, and I. Corp, “The microarchitecture
of the pentium 4 processor,” Intel Technology Journal, vol. 1,
2001.

[12] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and
J. Joyner, “Power5 system microarchitecture,” IBM Journal
of Research and Development, vol. 49, 2005.

[13] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sin-
haroy, “Power4 system microarchitecture,” IBM Journal of
Research and Development, vol. 46, 2002.

[14] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilk-
erson, and Z. Chishti, “Path confidence based lookahead
prefetching,” in Proceedings of the 49th International Sym-
posium on Microarchitecture, 2016.

[15] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilker-
son, S. H. Pugsley, and Z. Chishti, “Efficiently prefetching
complex address patterns,” in Proceedings of the 48th Inter-
national Symposium on Microarchitecture, 2015.

[16] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and
D. A. Jiménez, “Perceptron-based prefetch filtering,” in Pro-
ceedings of the 46th International Symposium on Computer
Architecture, 2019.

[17] P. Michaud, “Best-offset hardware prefetching,” in Proceed-
ings of the 22nd IEEE International Symposium on High
Performance Computer Architecture, 2016.

[18] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “Dspatch:
Dual spatial pattern prefetcher,” in Proceedings of the 52nd
International Symposium on Microarchitecture, 2019.

[19] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Spatial memory streaming,” in Proceedings of
the 33rd International Symposium on Computer Architecture,
2006.

[20] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern
matching for data cache prefetch,” in Proceedings of the 23rd
International Conference on Supercomputing, 2009.

[21] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and
H. Sarbazi-Azad, “Bingo spatial data prefetcher,” in Pro-
ceedings of the 25th IEEE International Symposium on High
Performance Computer Architecture, 2019.

[22] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and
C. Lin, “Temporal prefetching without the off-chip metadata,”
in Proceedings of the 52nd International Symposium on
Microarchitecture, 2019.

[23] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin,
“Efficient metadata management for irregular data prefetch-
ing,” in Proceedings of the 46th International Symposium on
Computer Architecture, 2019.

[24] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“Domino temporal data prefetcher,” in Proceedings of the
24th IEEE International Symposium on High Performance
Computer Architecture, 2018.

[25] S. Kumar and C. Wilkerson, “Exploiting spatial locality
in data caches using spatial footprints,” in Proceedings of
the 25th International Symposium on Computer Architecture,
1998.

[26] A. Jain and C. Lin, “Linearizing irregular memory accesses
for improved correlated prefetching,” in Proceedings of the
46th International Symposium on Microarchitecture, 2013.

[27] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Sub-
ramoney, and O. Mutlu, “Pythia: A customizable hardware
prefetching framework using online reinforcement learning,”
in Proceedings of the 54th International Symposium on Mi-
croarchitecture, 2021.

[28] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi,
“Spatio-temporal memory streaming,” SIGARCH Computer
Architecture News, vol. 37, 2009.

[29] S. Volos, J. Picorel, B. Falsafi, and B. Grot, “Bump: Bulk
memory access prediction and streaming,” in Proceedings
of the 47th International Symposium on Microarchitecture,
2014.

https://www.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf

[30] J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-
Grossman, A. Morrison, C. W. Fletcher, and D. Kohlbrenner,
“Augury: Using data memory-dependent prefetchers to leak
data at rest,” in Proceedings of the 2022 IEEE Symposium on
Security and Privacy, 2022.

[31] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,
“Prefetch side-channel attacks: Bypassing smap and kernel
aslr,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016.

[32] Y. Chen, L. Pei, and T. E. Carlson, “Leaking control
flow information via the hardware prefetcher,” CoRR, vol.
abs/2109.00474, 2021.

[33] Abishek Bhattacharjee, “Advanced concepts on address trans-
lation, appendix L in ‘Computer Architecture: A Quantitative
Approach’ by hennessy and patterson,” http://www.cs.yale.
edu/homes/abhishek/abhishek-appendix-l.pdf.

[34] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift,
“Efficient virtual memory for big memory servers,” in Pro-
ceedings of the 40th International Symposium on Computer
Architecture, 2013.

[35] A. Bhattacharjee, “Large-reach memory management unit
caches,” in Proceedings of the 46th International Symposium
on Microarchitecture, 2013.

[36] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D.
Lazowska, “The interaction of architecture and operating sys-
tem design,” SIGARCH Computer Architecture News, vol. 19,
1991.

[37] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod,
“Using the simos machine simulator to study complex com-
puter systems,” ACM Transactions on Modeling and Com-
puter Simulation, vol. 7, 1997.

[38] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a
warehouse-scale computer,” in Proceedings of the 42nd In-
ternational Symposium on Computer Architecture, 2015.

[39] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: A study of emerging scale-
out workloads on modern hardware,” in Proceedings of the
17th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2012.

[40] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan,
“Memory hierarchy for web search,” in Proceedings of the
24th IEEE International Symposium on High Performance
Computer Architecture, 2018.

[41] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the
front-end bottleneck with shotgun,” in Proceedings of the
23rd International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018.

[42] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Trans-
lation ranger: Operating system support for contiguity-aware
tlbs,” in Proceedings of the 46th International Symposium on
Computer Architecture, 2019.

[43] G. Vavouliotis, L. Alvarez, V. Karakostas, K. Nikas,
N. Koziris, D. A. Jiménez, and M. Casas, “Exploiting page
table locality for agile tlb prefetching,” in Proceedings of
the 48th International Symposium on Computer Architecture,
2021.

[44] V. S. S. Ram, A. Panwar, and A. Basu, “Trident: Harnessing
architectural resources for all page sizes in x86 processors,”
in Proceedings of the 54th International Symposium on Mi-
croarchitecture, 2021.

[45] C. Alverti, S. Psomadakis, V. Karakostas, J. Gandhi, K. Nikas,
G. Goumas, and N. Koziris, “Enhancing and exploiting
contiguity for fast memory virtualization,” in Proceedings
of the 2020 47th International Symposium on Computer
Architecture, 2020.

[46] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill,
K. S. McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal,
“Redundant memory mappings for fast access to large mem-
ories,” in Proceedings of the 42nd International Symposium
on Computer Architecture, 2015.

[47] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. S. Unsal,
“Energy-efficient address translation,” in Proceedings of the
22nd IEEE International Symposium on High Performance
Computer Architecture, 2016.

[48] D. A. Patterson and J. L. Hennessy, Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc.,
1990.

[49] A. Bhattacharjee, D. Lustig, and M. Martonosi, Architectural
and Operating System Support for Virtual Memory. Morgan
& Claypool Publishers, 2017.

[50] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomiza-
tion,” in Proceedings of the 11th ACM SIGSAC Conference
on Computer and Communications Security, 2004.

[51] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address
space layout permutation (aslp): Towards fine-grained ran-
domization of commodity software,” in Proceedings of the
22nd Computer Security Applications Conference, 2006.

[52] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced
operating system security through efficient and fine-grained
address space randomization,” in Proceedings of the 21st
USENIX Security Symposium, 2012.

[53] R. W. Carr and J. L. Hennessy, “Wsclock—a simple and
effective algorithm for virtual memory management,” in Pro-
ceedings of the 8th ACM Symposium on Operating Systems
Principles, 1981.

[54] D. E. Knuth, The Art of Computer Programming, Vol. 1:
Fundamental Algorithms, 3rd ed. Reading, Mass.: Addison-
Wesley, 1997.

[55] “Intel®64 and IA-32 Architectures Optimization Reference
Manual,” https://www.intel.com/content/dam/www/public/us/
en/documents/manuals/64-ia-32-architectures-optimization-
manual.pdf.

http://www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf
http://www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

[56] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching:
Skip, Don’T Walk (the Page Table),” in Proceedings of
the 37th International Symposium on Computer Architecture,
2010.

[57] Intel Corporation, “TLBs, Paging-Structure Caches, and
Their Invalidation,” https://composter.com.ua/documents/
TLBs Paging-Structure Caches and Their Invalidation.pdf,
2008.

[58] “Kernel address space layout randomization,” https://lwn.net/
Articles/569635/.

[59] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address
space layout randomization with intel tsx,” in Proceedings
of the 23rd ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[60] “Transparent Huge Pages,” http://lwn.net/Articles/423584/.

[61] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical,
transparent operating system support for superpages,” in Pro-
ceedings of the 5th Symposium on Operating Systems Design
and implementation, 2002.

[62] “Intel® 64 and IA-32 Architectures Software Developer Man-
uals,” https://software.intel.com/en-us/articles/intel-sdm.

[63] “AMD-V™ Nested Paging – White Paper 2008,”
http://developer.amd.com/wordpress/media/2012/10/NPT-
WP-1%201-final-TM.pdf.

[64] “Database Tuning on Linux OS: Reference Guide for AMD
EPYC™ 7002 Series Processors,” https://developer.amd.com/
wp-content/resources/56783 1.0.pdf.

[65] “Virtual memory support, armv4 and armv5,”
https://developer.arm.com/documentation/ddi0406/b/
Appendices/ARMv4-and-ARMv5-Differences/System-
level-memory-model/Virtual-memory-support?lang=en.

[66] F. Guo, S. Kim, Y. Baskakov, and I. Banerjee, “Proactively
breaking large pages to improve memory overcommitment
performance in vmware esxi,” in Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 2015.

[67] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,”
SIGARCH Computer Architecture News, vol. 34, 2006.

[68] “SPEC CPU 2017,” https://www.spec.org/cpu2017/.

[69] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP
benchmark suite,” CoRR, vol. abs/1508.03619, 2015.

[70] “Intel Xeon Gold,” https://en.wikichip.org/wiki/intel/xeon
gold/6258r.

[71] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram,
N. A. Mehta, and A. G. Gray, “Mlpack: A scalable c++
machine learning library,” J. Mach. Learn. Res., vol. 14, 2013.

[72] “Championship Value Prediction (CVP),” https://www.
microarch.org/cvp1/.

[73] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,”
SIGARCH Computer Architecture News, vol. 35, 2007.

[74] P. Conway and B. Hughes, “The amd opteron northbridge
architecture,” IEEE Micro, vol. 27, 2007.

[75] “Intel 5-Level Paging and 5-Level EPT,” https://ebin.pub/5-
level-paging-and-5-level-ept-white-paper-revision-
10nbsped.html.

[76] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot,
“Prefetched address translation,” in Proceedings of the 52nd
International Symposium on Microarchitecture, 2019.

[77] “Libhugetlbfs,” https://lwn.net/Articles/374424/, 2010.

[78] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos, “Temporal instruction fetch streaming,” in
Proceedings of the 41st International Symposium on Microar-
chitecture, 2008.

[79] A. Smith, “Sequential program prefetching in memory hier-
archies,” Computer, vol. 11, 1978.

[80] F. Dahlgren and P. Stenstrom, “Effectiveness of hardware-
based stride and sequential prefetching in shared-memory
multiprocessors,” in Proceedings of 1st IEEE Symposium on
High Performance Computer Architecture, 1995.

[81] “Arm Architecture Reference Manual for A-profile
Architecture,” https://developer.arm.com/documentation/
ddi0487/latest.

[82] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading
scheme to reduce data access penalty,” in Proceedings of the
1991 Conference on Supercomputing, 1991.

[83] S. Pakalapati and B. Panda, “Bouquet of instruction pointers:
Instruction pointer classifier-based spatial hardware prefetch-
ing,” in Proceedings of the 47th International Symposium on
Computer Architecture, 2020.

[84] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction
fetch,” in Proceedings of the 44th International Symposium
on Microarchitecture, 2011.

[85] “ARM Cortex-A55 Core Technical Reference Manual
r1p0,” https://developer.arm.com/documentation/100442/
0100/functional-description/level-1-memory-system/data-
prefetching?lang=en.

[86] G. Vavouliotis, L. Alvarez, B. Grot, D. Jiménez, and
M. Casas, “Morrigan: A composite instruction tlb prefetcher,”
in Proceedings of the 54th International Symposium on Mi-
croarchitecture, 2021.

[87] “Page-collect – Capturing Process Memory Usage Under
Linux,” https://github.com/cslab-ntua/contiguity-isca2020.

[88] “ChampSim,” https://crc2.ece.tamu.edu/.

[89] “CVE-2021-4002 Vulnerability,” https://nvd.nist.gov/vuln/
detail/CVE-2021-4002.

https://composter.com.ua/documents/TLBs_Paging-Structure_Caches_and_Their_Invalidation.pdf
https://composter.com.ua/documents/TLBs_Paging-Structure_Caches_and_Their_Invalidation.pdf
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
http://lwn.net/Articles/423584/
https://software.intel.com/en-us/articles/intel-sdm
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
https://developer.amd.com/wp-content/resources/56783_1.0.pdf
https://developer.amd.com/wp-content/resources/56783_1.0.pdf
https://developer.arm.com/documentation/ddi0406/b/Appendices/ARMv4-and-ARMv5-Differences/System-level-memory-model/Virtual-memory-support?lang=en
https://developer.arm.com/documentation/ddi0406/b/Appendices/ARMv4-and-ARMv5-Differences/System-level-memory-model/Virtual-memory-support?lang=en
https://developer.arm.com/documentation/ddi0406/b/Appendices/ARMv4-and-ARMv5-Differences/System-level-memory-model/Virtual-memory-support?lang=en
https://www.spec.org/cpu2017/
https://en.wikichip.org/wiki/intel/xeon_gold/6258r
https://en.wikichip.org/wiki/intel/xeon_gold/6258r
https://www.microarch.org/cvp1/
https://www.microarch.org/cvp1/
https://ebin.pub/5-level-paging-and-5-level-ept-white-paper-revision-10nbsped.html
https://ebin.pub/5-level-paging-and-5-level-ept-white-paper-revision-10nbsped.html
https://ebin.pub/5-level-paging-and-5-level-ept-white-paper-revision-10nbsped.html
https://lwn.net/Articles/374424/
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/100442/0100/functional-description/level-1-memory-system/data-prefetching?lang=en
https://developer.arm.com/documentation/100442/0100/functional-description/level-1-memory-system/data-prefetching?lang=en
https://developer.arm.com/documentation/100442/0100/functional-description/level-1-memory-system/data-prefetching?lang=en
https://github.com/cslab-ntua/contiguity-isca2020
https://crc2.ece.tamu.edu/
https://nvd.nist.gov/vuln/detail/CVE-2021-4002
https://nvd.nist.gov/vuln/detail/CVE-2021-4002

[90] “CVE-2017-15127 Vulnerability,” https://nvd.nist.gov/vuln/
detail/CVE-2017-15127.

[91] D. Tarjan and K. Skadron, “Merging analysis and gshare
indexing in perceptron branch prediction,” ACM Trans. Archit.
Code Optim., vol. 2, 2005.

[92] “AMD Epyc 7702P,” https://en.wikichip.org/wiki/amd/epyc/
7702p.

[93] “AMD Ryzen Threadripper 3990X,” https://en.wikichip.org/
wiki/amd/ryzen threadripper/3990x.

[94] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood,
and B. Calder, “Using simpoint for accurate and efficient
simulation,” SIGMETRICS Perform. Eval. Rev., vol. 31, 2003.

[95] S. Mirbagher-Ajorpaz, E. Garza, G. Pokam, and D. A.
Jiménez, “CHiRP: Control-flow history reuse prediction,” in
Proceedings of the 53rd International Symposium on Microar-
chitecture, 2020.

[96] D. A. Jiménez and E. Teran, “Multiperspective reuse predic-
tion,” in Proceedings of the 50th International Symposium on
Microarchitecture, 2017.

https://nvd.nist.gov/vuln/detail/CVE-2017-15127
https://nvd.nist.gov/vuln/detail/CVE-2017-15127
https://en.wikichip.org/wiki/amd/epyc/7702p
https://en.wikichip.org/wiki/amd/epyc/7702p
https://en.wikichip.org/wiki/amd/ryzen_threadripper/3990x
https://en.wikichip.org/wiki/amd/ryzen_threadripper/3990x

	Introduction
	Background
	Data Cache Prefetching
	Architectural Support for Address Translation
	Large Pages

	Spatial Cache Prefetching and Page Boundaries
	Spatial Prefetching at L1D
	Spatial Prefetching at L2C/LLC

	Motivation
	Limitations of Existing Cache Prefetchers
	Opportunity for Safe Prefetching Across 4KB Boundaries
	Quantifying the Potential

	Integrating Large Pages into the Design
	Putting Everything Together

	Design
	Page-size Propagation Module (PPM)
	Implementation and Operation

	Integrating Large Pages in the Design
	Design of Pref-PSA-2MB
	Selection Logic
	Pref-PSA-SD Operation

	Methodology
	Performance Model
	Constrained Evaluation

	Workloads

	Evaluation
	Considered Prefetchers
	Single Core Experiments
	Performance
	Sources of Performance Enhancements
	Different Selection Logic Implementations
	Constrained Evaluation
	Comparison with L1D Prefetching

	Multi-Core Experiments

	Conclusions
	acknowledgements
	References

