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Abstract—Graph-processing workloads have become
widespread due to their relevance on a wide range of
application domains such as network analysis, path-planning,
bioinformatics, and machine learning. Graph-processing
workloads have massive data footprints that exceed cache
storage capacity and exhibit highly irregular memory access
patterns due to data-dependent graph traversals. This irregular
behaviour causes graph-processing workloads to exhibit poor
data locality, undermining their performance.

This paper makes two fundamental observations on the mem-
ory access patterns of graph-processing workloads: First, con-
ventional cache hierarchies become mostly useless when dealing
with graph-processing workloads, since 78.6% of the accesses that
miss in the L1 Data Cache (L1D) result in misses in the L2 Cache
(L2C) and in the Last Level Cache (LLC), requiring a DRAM
access. Second, it is possible to predict whether a memory access
will be served by DRAM or not in the context of graph-processing
workloads by observing strides between accesses triggered by
instructions with the same Program Counter (PC). Our key
insight is that bypassing the L2C and the LLC for highly
irregular accesses significantly reduces latency cost while also
reducing pressure on the lower levels of the cache hierarchy.

Based on these observations, this paper proposes the Large
Predictor (LP), a low-cost micro-architectural predictor capable
of distinguishing between regular and irregular memory accesses.
We propose to serve accesses tagged as regular by LP via the
standard memory hierarchy, while irregular access are served
via the Side Data Cache (SDC). The SDC is a private per-
core set-associative cache placed alongside the L1D specifically
aimed at reducing the latency cost of highly irregular accesses
while avoiding polluting the rest of the cache hierarchy with
data that exhibits poor locality. SDC coupled with LP yields
geometric mean speed-ups of 20.3% and 20.2% on single- and
multi-core scenarios, respectively, over an architecture featuring
a conventional cache hierarchy across a set of contemporary
graph-processing workloads. In addition, SDC combined with
LP outperforms the Transpose-based Cache Replacement (T-
OPT), the state-of-the-art cache replacement policy for graph-
processing applications, by 10.9% and 13.8% on single-core and
multi-core contexts, respectively. Regarding the hardware budget,
SDC coupled with LP requires 10KB of storage per core.

Index Terms—graph processing, cache management, off-chip
prediction, micro-architecture

I. INTRODUCTION

In recent years, graph-processing has become an important
class of workloads with applications in a rapidly growing
and diverse number of fields (e.g., network analysis [16],
bioinformatics [22], path-planning [12], and machine learning
[13]). Graph-processing workloads typically use very large
input sets, often in multi-gigabyte scale, and data-dependent
graph traversal methods [33] that exhibit highly irregular mem-
ory access patterns. Processing such massive and irregularly
accessed data prevents graph-processing applications from
exhibiting good locality, imposing great difficulty on tradi-
tional cache hierarchies to efficiently serve memory requests,
leading to frequent main memory accesses that incur high
latency overheads and compromise application performance.
Indeed, recent work [50] demonstrates that, due to the irregular
memory access patterns of data-depend graph traversals, state-
of-the-art graph-processing workloads spend up to 80 % of the
total execution time waiting for the DRAM.

Prior work has quantified the overheads of graph-processing
workloads [31] and has proposed several approaches to ame-
liorate their costs. These approaches mainly fall into the
following categories: (i) domain-specialized cache manage-
ment for graph-processing applications [8], [39]; (ii) indirect
memory prefetching [6], [9], [48], which aims at improving
the throughput of memory-bound graph-processing workloads
by fetching data blocks before they are explicitly requested by
the application; (iii) graph-processing accelerators [15], [21],
[31], [34]–[36]; and (iv) pre-processing schemes that improve
the locality of graph-processing workloads [7], [14], [45]. Our
proposal is in the first category, which applies fine-grained
micro-architectural cache management optimizations, avoiding
costly pre-processing of the graph data without requiring any
changes to the architecture nor to any software layer.

Two key observations drive our proposal: First, conventional
cache hierarchies become mostly useless when dealing with
graph-processing workloads, since 78.6% of the accesses that
miss in the L1 Data Cache (L1D) result in misses in the
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L2 Cache (L2C) and in the Last Level Cache (LLC), thus
requiring a DRAM access. This is caused by the poor locality
of part of the data set of graph-processing applications that
is accessed with highly irregular memory access patterns. The
second observation is that strides between accesses triggered
by instructions featuring the same Program Counter (PC) are
a good program feature to predict whether a certain memory
access will be served by DRAM or not. Our key insight is that
bypassing the L2C and the LLC for highly irregular accesses
significantly reduces their latency cost and, at the same time, it
lowers the pressure on the lower levels of the cache hierarchy.
This, in turn, minimizes cache pollution and increases the
effective capacity of the L2C and the LLC for the subset of
data that exhibits good locality and that is accessed by regular
accesses patterns.

To exploit the above explained key insights and overcome
the limitations of current cache hierarchies, this work pro-
poses the Large Predictor (LP), a novel and low-cost micro-
architectural predictor capable of dynamically identifying reg-
ular and irregular access patterns. To do so, LP employs a
small prediction table, indexed with the PC, that provides a
historic knowledge of the strides of the memory accesses.
LP leverages this information to classify a memory access as
regular or irregular; those classified as regular are routed to the
normal cache hierarchy while the others go through the Side
Data Cache (SDC), a new per-core private auxiliary cache.
The SDC is a small set-associative cache placed alongside
the L1D with the specific purpose of reducing the latency of
highly irregular accesses while avoiding polluting the rest of
the cache hierarchy with data that exhibits poor locality.

This paper makes the following contributions:
• We corroborate that memory requests of graph-processing

workloads that miss in the L1D also miss in the L2C and the
LLC with high probability. The key insight of this study is that
bypassing the L2C and LLC for irregular accesses that do not
exhibit locality has potential to provide significant benefits.

• We propose and design the Side Data Cache (SDC),
a small on-chip cache placed alongside the L1D, and the
Large Predictor (LP), a novel micro-architectural predictor that
dynamically classifies the memory requests into regular and
irregular. The accesses identified by LP as regular and irregular
are routed to L1D and to the SDC, respectively. Our proposal
improves the performance of graph-processing applications by
removing the useless L2C and LLC look-ups for the irregular
accesses while also reducing cache pollution and improving
the locality in the rest of the cache hierarchy.

• We demonstrate that, across a set of contemporary and
diverse graph-processing workloads, our proposal outperforms
conventional cache hierarchies as well as the Transpose-based
Cache Replacement (T-OPT) [8], the state-of-the-art cache
management scheme for graph-processing workloads, achiev-
ing respective geometric mean speedups of 20.3% and 10.9%
in single-core scenarios, and of 20.2 % and 13.8% on a multi-
core setup. Furthermore, T-OPT (and its practical but less
performant implementation, P-OPT) requires modifying the
original application, whereas our proposal does not. Regarding
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Fig. 1. Graph representations using the CSR/CSC format.

the hardware budget, SDC coupled with LP requires 10KB of
storage per core.

II. BACKGROUND AND MOTIVATION

A. Graph-Processing Workloads

Graph-processing is becoming a fundamental tool in a wide
range of areas including bionformatics [22], social network
analysis [16], and web analytics [12]. Graph-processing work-
loads typically use sparse data formats like the Compressed
Sparse Row/Column (CSR/CSC) [20], or even more sophisti-
cated proposals [29], to manage large amounts of graph data.
The CSR/CSC format is used to encode the graph’s adjacency
matrix using several data structures. The first one contains
the row or the column indices of the adjacency matrix for
the cases of CSR and CSC, respectively, and it is typically
called the Neighbors Array (NA). The second data structure
indexes the beginning of each adjacency matrix row for the
case of CSR (column for CSC), and it is denoted as the
Offset Array (OA). Figure 1 represents both the OA and the
NA arrays corresponding to the left-hand side graph for both
the CSR and CSC formats. Finally, there are additional data
structures that contain numerical data corresponding to graphs
vertices that we call Property Arrays. In the context of graph-
processing, the CSR format encodes outgoing neighbors while
CSC contains incoming ones.

Manipulating these sparse data structures often produces
irregular memory access patterns. For example, when comput-
ing the Sparse Matrix-Vector (SpMV) multiplication y = Ax,
accesses to vector x are indexed by the column indices of
matrix A, which are non-contiguous and constitute an irregular
access stream. Graph-processing workloads also display highly
irregular memory access patterns driven by operations like
graph traversals that require visiting all the nodes of graph V ,
that is, scanning adjacency matrix rows following the graph
connectivity. For a certain vertex vi, its neighbors correspond
to the non-zero elements of adjacency matrix row i and
define the next rows of the adjacency matrix to be accessed,
producing an irregular memory access stream driven by the
graph connectivity.

Algorithm 1 shows one of the most important graph-
processing workloads, Page Rank [12]. Algorithm 1 shows
the two main steps of Page Rank per each main loop iteration.
First, for each vertex vu, the algorithm updates the content of
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Algorithm 1 Computation of Page Rank scores
Require: G(V,OA,NA) {OA and NA respectively denote

the offset array and the neighbors array in the CSC
format.}

Require: δ {Dampling factor.}
Require: ϵ {Convergence threshold.}
Require: iterations {Maximum # of iterations to process.}
Ensure: scores[:] {Page Rank scores for all vertices}

1: scores[:]← 1
#V

2: for iter ← [0; iterations− 1] do
3: error ← 0
4: for all vertex vu ∈ V do
5: outgoing contrib[u]← scores[u]

d+(u)
6: end for
7: for all vertex vu ∈ V do
8: sum← 0
9: for i← [OA[u], OA[u+ 1]− 1] do

10: sum← sum+ outgoing contrib[NA[i]]
11: end for
12: old score← scores[u]
13: scores[u]← 1−δ

#V + δ · sum
14: error ← error + |scores[u]− old score|
15: end for
16: if error < ϵ then
17: Convergence has been reached.
18: end if
19: end for

the outgoing contrib array using the scores obtained in the
previous iteration divided by the number of outgoing neighbors
of vu, d+(u). Then, the algorithm computes the Page Rank
score of each vertex vu as the sum of the outgoing contrib
and a constant value that depends on the index count, #V ,
and the dampling factor δ. This process is repeated until either
convergence or the maximum number of iterations is reached.

The code region that produces irregular accesses is com-
posed of a loop that ranges from line 7 to 15. The purpose
of this loop is to traverse the entire graph by iterating over
the incoming neighbors of a given vertex vu, which are
located between positions OA[u] and OA[u + 1] − 1 of the
NA array. The algorithm uses these indices to access the
outgoing contrib property array, thus, the access pattern to
outgoing contrib is driven by the matrix connectivity.

B. Characterizing the Memory Hierarchy Behavior of Graph-
Processing Workloads

Irregular memory access patterns driven by graph con-
nectivity have a strong impact on the memory hierarchy
behavior of graph-processing workloads. Figure 2 shows
the Misses-Per-Kilo-Instruction (MPKI) rates experienced by
graph-processing workloads belonging to the GAP benchmark
suite [10]. We show MPKI rates concerning three cache
hierarchy levels (L1D, L2C, and LLC). Section IV describes
in detail our experimental setup. Figure 2 shows that graph-
processing workloads suffer from a large number of misses on

b
c
.f

r
ie

n
d
s
t
e
r

b
c
.k

r
o
n

b
c
.r

o
a
d

b
c
.t

w
it

t
e
r

b
c
.u

r
a
n
d

b
c
.w

e
b

b
fs

.f
r
ie

n
d
s
t
e
r

b
fs

.k
r
o
n

b
fs

.r
o
a
d

b
fs

.t
w

it
t
e
r

b
fs

.u
r
a
n
d

b
fs

.w
e
b

c
c
.f

r
ie

n
d
s
t
e
r

c
c
.k

r
o
n

c
c
.r

o
a
d

c
c
.t

w
it

t
e
r

c
c
.u

r
a
n
d

c
c
.w

e
b

p
r
.f

r
ie

n
d
s
t
e
r

p
r
.k

r
o
n

p
r
.r

o
a
d

p
r
.t

w
it

t
e
r

p
r
.u

r
a
n
d

p
r
.w

e
b

s
s
s
p
.k

r
o
n

s
s
s
p
.r

o
a
d

s
s
s
p
.t

w
it

t
e
r

s
s
s
p
.u

r
a
n
d

s
s
s
p
.w

e
b

t
c
.f

r
ie

n
d
s
t
e
r

t
c
.k

r
o
n

t
c
.r

o
a
d

t
c
.t

w
it

t
e
r

t
c
.u

r
a
n
d

t
c
.w

e
b

m
e
a
n

0

50

100

150

200

M
is

se
s

P
e
r

K
il

o
-I

n
st

ru
c
ti

o
n
s L1D

L2C

LLC

Fig. 2. Misses-Per-Kilo-Instruction (MPKI) across the different levels of the
cache hierarchy triggered by graph-processing workloads.
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Fig. 3. Probability of accessing DRAM for accesses exhibiting different
strides. Data corresponds to the cc.friendster workload.

all the levels of the cache hierarchy. The average MPKI rates
of graph workloads for the L1D, the L2C, and the LLC are,
respectively, 53.2, 44.5, and 41.8.

Finding 1. Graph-processing workloads exhibit very high
MPKI rates in all cache levels.

In addition, Figure 2 shows that L2C and LLC MPKI rates
are just slightly smaller than L1D MPKI, which indicates that
just a minor portion of L1D misses are served either by the
L2C and LLC. Our analysis indicates that 78.6% of the access
that miss in the L1D also miss in the lower cache levels, so
they require a DRAM access.

Finding 2. A very large portion (78.6%) of the accesses
that trigger L1D misses also miss in the lower-levels of the
cache hierarchy and require a DRAM access.

Figure 3 shows a characterization of the memory accesses
triggered by graph-processing workloads in terms of strides
between accesses issued by instructions with the same PC. The
x-axis displays different intervals of strides. The y-axis shows
the percentage of memory accesses that are served at DRAM
per each interval. We obtain data on Figure 3 by considering
the Connected Components (CC) application [10] of the GAP
suite applied to the Friendster graph [47]. Section IV describes
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in detail our experimental setup. Figure 3 indicates that
memory accesses featuring small strides have a much lower
probability of accessing DRAM than access displaying large
strides. For example, just 11.6% of memory accesses whose
strides fall between 2 and 10 (i. e. interval (100 to 101] of
Figure 3) access DRAM, while this percentage grows to 97.6%
for accesses with strides between 105+1 and 106. We analyze
all GAP benchmarks suite and observe similar behaviour.

Finding 3. Memory accesses featuring large strides have
a very high probability of accessing DRAM.

These three findings imply that memory accesses of graph-
processing workloads can be divided into two categories: i)
accesses displaying a large stride with respect to the last
access triggered by an instruction with the same PC, that have
a very high probability of missing on all cache levels and
accessing DRAM; and ii) accesses featuring a small stride,
that are in general served by the cache hierarchy. It is thus
natural to propose hardware mechanisms able to differentiate
between these two categories and avoid cache averse accesses
to pollute cache content. These mechanisms significantly re-
duce the latency for cache-averse and cache-friendly accesses,
respectively, by eliminating unnecessary cache look-ups for
the former and preventing cache lines containing data for the
latter from being evicted by insertions of cache-averse data.

III. MANAGING MEMORY ACCESSES OF
GRAPH-PROCESSING WORKLOADS

To address irregular memory access patterns in graph-
processing workloads, we introduce two hardware innovations:
the Side Data Cache (SDC), a compact cache positioned
alongside each core’s L1D cache, and the Large Predictor
(LP), a cost-effective microarchitectural predictor. The LP
classifies memory accesses as cache-friendly or cache-averse
and routes cache-averse accesses to the SDC. This approach
reduces latency by avoiding costly cache hierarchy look-ups
and improves cache locality by preventing cache pollution.

A. Side Data Cache (SDC)

The Side Data Cache (SDC) is a small on-chip cache placed
alongside the L1D cache of every core. The goal of the
SDC is to provide an alternative and fast data path for cache
averse memory accesses. As Section II indicates, 78.6% of the
accesses that miss in the L1D also miss in the lower levels of
the cache hierarchy and end up accessing DRAM, and most
of these are caused by cache averse accesses that exhibit large
strides. To prevent performance inefficiencies when handling
cache averse accesses, these are routed to the SDC instead of
to the traditional cache hirarchy. If the look-up in the SDC
hits, the requested cache block returned to the CPU with low
latency, given that the SDC is smaller than a conventional
L1D. In case the look-up in the SDC misses, a coherence
message is sent to the cache directory to ensure coherence (as
described later in detail in Section III-C) and, if the data is
not present in the rest of the cache hierarchy, the requested
block is fetched from DRAM and directly inserted in the SDC,

LP
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45

Prediction

Table Is large?

Cache hierarchy
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SDC

No

Hit
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Memory Instruction

DRAM

Miss

Miss

1 2

Fig. 4. Operation of the LP on a prediction event.

bypassing the L2C and the LLC. This provides a fast path
to DRAM, avoiding costly accesses to the lower-level caches
(L2C, LLC). In addition, cache pollution is reduced in all the
levels of the cache hierarchy (L1D, L2C, LLC), which get
cleared from irregular access patterns interfering with regularly
accessed data and, thus, improve the cache management for
the regularly accessed blocks.

In order to capitalize on the benefits of the SDC, some
prediction logic able to categorize memory accesses as cache
friendly or cache averse is required.

B. Large Predictor (LP)

To identify memory accesses that should be directed to the
SDC we propose the Large Predictor (LP), a microarchitec-
tural prediction mechanism capable of dynamically distinguish
between regular and irregular access patterns. Before trigger-
ing a memory access, the core consults LP to decide whether
the access must be directed to the SDC or to the normal
cache hierarchy (L1D, L2C, LLC). LP builds its predictions
on the historic knowledge of strides between memory accesses
triggered by instructions with the same PC. LP classifies
memory accesses as either regular or irregular. Section II
indicates that accesses featuring large strides have a high
probability of being served at DRAM. This behavior is a
distinctive characteristic that allows LP to predict whether
a certain memory access benefits from accessing the cache
hierarchy or the SDC.

LP practically classifies memory accesses between cache
averse and cache friendly by leveraging a PC-indexed pre-
diction table. Each prediction table entry consists of i) a tag
of the PC used to access memory (entry.tag); ii) the
block address of the previous access performed by this PC
(entry.addr); iii) a field that stores an accumulation of the
previous strides between cache blocks accessed by instructions
corresponding to this predictor entry (entry.s_acc); and
iv) a valid bit (entry.valid).

1) LP Operation: Figure 4 provides a step-by-step illus-
tration of the prediction process. Upon executing a memory
instruction and prior to sending the memory request to the
memory sub-system 1, the core consults the LP providing it a
tuple (PC, v@), where PC is the instruction’s PC and v@ is
the block address of the fetched data. The PC is hashed into a
tag and set index that are both used to look-up the prediction
table. The set index is computed as PC mod #sets and the
tag as PC ≫ log2(#sets). On a prediction table hit 2 , the
stride field entry.s_acc of the matching entry is compared
to a global threshold τglob. If the value of the entry.s_acc
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Predictor set 1

entry.tag entry.addr entry.s_acc entry.valid

0xF6B5 0xB59F 8 1

... ... ... ...

0xA9CC 0x89AC 965 0

Memory
Instruction
(PC, v@)


(0xF6B5, 0xA4CC)

- Distance + >> 1

1

2

3
4

5

Fig. 5. Organization of the LP predictor and a functional example of its
update sequence.

field satisfies the condition entry.s acc ≥ τglob, the access is
served by the SDC 3. Conversely, if the entry.s_acc field
is lower than the global threshold, the access is routed to the
cache hierarchy (L1D, L2C and LLC) 4. On a prediction table
miss 5, the memory access is served by the cache hierarchy.

2) LP Update: Figure 5 provides a step-by-step illustration
of an operational example of a LP update. Upon the trigger of
a memory access 1, the core consults the LP providing it with
a tuple containing the instruction PC and the block address:
(PC, v@). The PC is hashed into a tag and a set index that
are used to look-up the prediction table 2. On a hit in the
prediction table, the block address (entry.addr) stored in the
prediction table entry is read, and the stride s between the
block address (entry.addr) and the current block address v@
is computed as s = |v@ − entry.addr| 3. The value stored
in the entry.s_acc field of the prediction table entry is
accumulated to this stride s, and a right bit shift is performed
on the accumulated value 4.

3) LP Replacement: Upon a prediction table miss, a victim
is selected using the LRU replacement policy (i.e., an entry is
either selected as the LRU entry of a given set or when the
entry.valid equals 0). The content of the victim entry is
then initialized such that the tag is set to PC ≫ log2(#sets),
the entry.addr field is initialized to the block address
v@ attached to the instruction, the entry.s_acc field is
initialized to 0 , and the entry.valid field is set to 1.

C. Coherence

To ensure coherence between the SDC and the cache
hierarchy, we introduce the SDCDir, an extension of the
cache directory. SDCDir entries hold the cache block’s tag,
coherence status, and sharer core data, as depicted in Figure 6.

The SDCDir allows for coherence without major protocol
changes. Requests from SDCs and L2s simultaneously access
both the cache directory and the SDCDir. In invalidation-based
protocols like MESI [37] and MOESI [43], read requests check
the cache directory and SDCDir together. If no valid copy
is found in any cache or SDC, the request goes to DRAM.
Otherwise, the request is served by the cache or SDC with the
valid copy. Write requests also perform parallel directory and
SDCDir lookups, invalidating the cache block in remote cores

 

CPU
L2L1D

SDC

Core
Cache directory

Tag StatusSharer cores

SDCDir

CPU
L2L1D

SDC

Core
Tag StatusSharer cores

Home node

Fig. 6. Hardware support for SDC coherence.

and writing it back to DRAM if dirty. This ensures only one
valid copy of a cache block in either the cache hierarchy (L1,
L2, LLC) or the SDCs, except for clean blocks.

The SDCDir maintains precise information of the data
stored in the SDCs. When a SDC request misses in the
SDCDir, the request is served by the cache hierarchy or the
DRAM and a new SDCDir entry is created for the cache block.
Subsequent requests to the same cache block from any SDC
update the status bits and the bit vector of sharer cores of
the SDCDir entry as defined by the coherence protocol. Upon
replacements in the SDCDir, the entry selected as victim is
invalidated and all the copies of the corresponding cache block
in all the SDCs are also invalidated, writing the block back to
DRAM if needed.

D. Putting It All Together

This section explains the operation when the LP and the
SDC are combined (SDC+LP) to accelerate the memory ac-
cesses of irregular workloads.

As shown on Figure 4, upon a memory access, LP is
consulted by the core and answers with a Boolean prediction,
saying whether this memory access must be directed to the
SDC or to the standard cache hierarchy (L1D, L2C, LLC).
If the access is directed to the SDC and the look-up hits,
the data block is returned to the core benefiting the very low
latency of the SDC. Otherwise, if the access misses in the
SDC, a lightweight coherence message is sent to the cache
directory to ensure correctness and the access is served from
either a remote cache or the DRAM. In case of accessing the
DRAM, the cache block is directly inserted into the SDC,
bypassing the L2C and the LLC and thus reducing the latency
of the memory operation while avoiding polluting the rest of
the cache hierarchy. Conversely, if the LP predicts that the
L1D must be accessed, the cache block is requested to the
L1D and the operation of the cache hierarchy proceeds as in
a regular system without SDCs.

This combination allows feeding the SDC with accesses to
irregularly accessed data-structures that, if directed to the L1D,
would most likely miss all the way through the cache hierarchy
and access the DRAM, leading to poor performance due to the
latency costs of useless cache look-ups. In addition, directing
irregular memory accesses to the SDC avoids polluting the
rest of the cache hierarchy. As a result, the L1D, the L2C, and
the LLC experience better locality and can make better cache
management decisions for cache friendly memory accesses,
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Component Description
Branch Predictor hashed perceptron
CPU 2.166GHz, 4-wide out-of-order processor

6-stage pipeline, 224-entries re-order buffer
L1 ITLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR
L1 DTLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR
L2 TLB 1536-entry, 12-way, 8-cycle latency, 16-entry MSHR
L1-I Cache 32KiB, 8-way, 4-cycle latency, 10-entry MSHR
L1-D Cache 32KiB, 8-way, 4-cycle latency, 10-entry MSHR

LRU replacement, next line prefetcher
SDC 8KiB, 2-way, 1-cycle latency, 10-entry MSHR

LRU replacement, next line prefetcher
LP Predictor 552B, 32-entries, 8-way, LRU replacement, τglob=8
L2 Cache 1MiB, 16-way, 10-cycle latency, 16-entry MSHR

LRU replacement, SPP prefetcher [28]
LLC 1.375MiB per core, 11-way, 56-cycle latency, 64-entry MSHR

LRU replacement
SDCDir 128 entries per core, 8-way, 1-cycle latency, LRU replacement
DRAM 16GiB per core, DDR4 SDRAM

data-rate: 2.933GT/s, I/O bus frequency: 1466.5MHz
tRP = tRCD = tCAS = 24 cycles

TABLE I
SYSTEM CONFIGURATION

without suffering the negative effects of handling cache averse
memory accesses. In addition, capitalising on these benefits
does not require modifications in any software layer and only
introduces minimal storage overheads.

E. Context Switches

Upon context switches, one must consider what should
happen of the information stored in the LP and the SDC.
Similarly to the L1D, the SDC is a Virtually Indexed Physically
Tagged (VIPT) cache structure, as such it does not need to be
flushed upon context switches as different processes will refer
to disjoint regions of the physical memory.

IV. METHODOLOGY

A. Simulation Infrastructure

We evaluate our proposal with ChampSim [4], a detailed
simulator that models a 4-wide out-of-order CPU along with
its cache hierarchy, prefetching mechanisms, and memory sub-
system. Table I provides our system configuration based on the
recent server Intel Cascade Lake micro-architecture [1].

B. Graph-Processing Applications

We use six graph-processing applications from the GAP
benchmark suite [10]. Breadth-First Search (BFS) is a fun-
damental graph traversal algorithm. Page Rank (PR) itera-
tively updates per-vertex ranks until convergence. Connected
Components (CC) applies the Shiloach-Vishkin [41] algorithm
to compute the largest connected components of the graph.
Betweenness Centrality (BC) uses the Brandes algorithm [11]
to approximate the per-vertex centrality scores. Triangle Count
(TC) counts the number of triangles in the graph. Finally,
Single-source Shortest Paths (SSSP) uses δ-stepping [30] to
return the distance of all vertices of a graph to a given source
vertex. Table II shows the main characteristics of these six
applications, including the size of property array elements,
and input parameters like the execution style (push or pull),
or the use of frontiers.

BC [10] BFS [10] CC [10] PR [10] TC [10] SSSP [10]
irregData ElemSz 8B + 4B 4B 4B 4B 4B 4B

Execution style Push-Mostly Push & Pull Push-Mostly Pull-Only Push-Only Push-Only
Use Frontier Yes Yes No No No Yes

TABLE II
GRAPH KERNELS

Web [10] Road [10] Twitter [10] Kron [10] Urand [10] Friendster [47]
# Vertices (in M) 50.6 23.9 61.6 134.2 134.2 65.6
# Edges (in M) 1,949.4 58.3 1,468.4 2,111.6 2,147.4 3,612.1

TABLE III
INPUT GRAPHS

For each kernel we consider 6 different input graphs from
areas like social networks or path-planning. Table III lists
them. These graphs feature different sizes and distributions
of node degrees (power-law, normal, etc.). Different degree-
distributions produce different memory access patterns. For
instance, when node degrees are distributed following a power-
law function, there are a few highly connected graph nodes that
yield more data reuse than vertices with a few connections.

C. Single-Core Workloads

Our set of single-thread graph-processing workloads is com-
posed of the 36 combinations of kernels and inputs listed in
Tables II and III, respectively. We use the SimPoint methodol-
ogy [38] to identify intervals representative of each workload.
Each SimPoint is 1 billion instructions long and characterizes a
different phase of these workloads. Each SimPoint is executed
for 200 million instructions to warm-up the memory hierarchy
and other microarchitectural structures, and it is executed
for an additional set of 200 million instructions to obtain
experimental results.

D. Multi-Core Workloads

We randomly generate 50 distinct 4-thread workloads com-
posed of mixes of all available 36 single-thread workloads.
Our performance results on multi-thread workloads report the
weighted speed-up normalized to the baseline. This metric is
commonly used to evaluate multi-threaded scenarios [25], [40]
since it avoids performance overestimation due to high-IPC
threads. The metric is computed as follows: for each thread
running on the simulated system, we compute its IPC in a
shared environment (IPCshared) and its IPC in isolation on
the same system (IPCsingle). We then compute the weighted
IPC of the mix as the weighted sum of IPCshared/IPCsingle

for all the benchmarks in the mix, and we normalize this
weighted IPC with the weighted IPC of the baseline design.

E. Alternative Approaches

We compare our proposal, SDC+LP, against five
previously proposed approaches aimed at boosting the
performance of graph-processing and irregular workloads:
i) The Transpose-based Cache Replacement
(T-OPT) [8], the state-of-the-art cache replacement policy
for graph data based on the graph adjacency matrix. T-OPT
(and its practical but less performant implementation, P-OPT)
requires modifying the original application; ii) the Distill
Cache [39] technique that retains only the used words within
a cache line and evicts the unused ones to optimize the use of
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Fig. 7. Performance improvement of SDC+LP and other considered scenarios with respect to the Baseline architecture.

cache storage capacity; iii) a scenario where we enhance the
L1D with 8KB of storage capacity by increasing its number
of ways from 8 to 10. These additional 8KB correspond
to the storage budget of the SDC per core. We call this
approach L1D 40KB ISO; iv) a scenario where we double
the size of the LLC by increasing the number of sets from
2048 to 4096 that we call 2xLLC; and v) an expert-based
classification scheme that identifies via judicious source code
and performance data analysis which data structures produce
memory access patterns that are cache averse and should
thus be routed to the SDC. We perform a characterization
of the access patterns seen by each individual data structure
for all considered workloads. We call this scenario Expert
Programmer. Our evaluation also considers a Baseline
configuration that corresponds to a system with a standard
cache hierarchy. All system configuration parameters are
specified in Table I.

V. EVALUATION

This section evaluates SDC+LP. Section V-A compares
SDC+LP against other hardware proposals in the single-
core context, as well as an explanation of the performance
delivered by SDC+LP. Section V-B presents an exhaustive
design space exploration to justify SDC+LP design choices.
Section V-C compares the performance achieved by SDC+LP
against the Expert Programmer approach. Section V-D
evaluates SDC+LP in the multi-core context. Section V-E
describes the hardware cost of SDC+LP.

A. Single-Core Evaluation

This section compares SDC+LP against four hardware
approaches: T-OPT, Distill Cache, L1D 40KB ISO,
and 2xLLC. Section IV describes these four hardware ap-
proaches. Figure 7 shows in the y-axis the performance
improvement that SDC+LP and the other hardware approaches
achieve with respect to the Baseline architecture with a
standard cache hierarchy. The x-axis displays the 36 graph
processing workloads we consider. Both L1D 40KB ISO
and the Distill Cache designs fail to provide significant
performance improvements, as they only achieve geometric
mean speedups of 0.0% and 0.1%, respectively. By contrast,

T-OPT can provide a significant geometric mean speedup of
9.4% by making cache replacement decisions based on graph
adjacency matrices. The 2xLLC is also able to significantly
improve performance, achieving a geometric mean speedup of
11.2% over the baseline and slightly outperforming T-OPT.
Finally, LP+SDC doubles the performance improvements of
both T-OPT and 2xLLC by providing a geometric mean
speedup of 20.3% over the baseline.

p
r
.w

e
b

c
c
.w

e
b

t
c
.w

e
b

t
c
.k

r
o
n

b
fs

.w
e
b

t
c
.t

w
it

t
e
r

b
c
.w

e
b

b
c
.u

r
a
n
d

t
c
.f

r
ie

n
d
s
t
e
r

s
s
s
p
.k

r
o
n

b
c
.f

r
ie

n
d
s
t
e
r

c
c
.r

o
a
d

s
s
s
p
.t

w
it

t
e
r

t
c
.r

o
a
d

s
s
s
p
.u

r
a
n
d

b
c
.t

w
it

t
e
r

b
fs

.t
w

it
t
e
r

p
r
.r

o
a
d

c
c
.t

w
it

t
e
r

b
c
.k

r
o
n

s
s
s
p
.w

e
b

s
s
s
p
.r

o
a
d

c
c
.f

r
ie

n
d
s
t
e
r

t
c
.u

r
a
n
d

c
c
.u

r
a
n
d

b
fs

.u
r
a
n
d

b
fs

.f
r
ie

n
d
s
t
e
r

b
fs

.k
r
o
n

c
c
.k

r
o
n

p
r
.t

w
it

t
e
r

b
fs

.r
o
a
d

b
c
.r

o
a
d

p
r
.k

r
o
n

p
r
.u

r
a
n
d

p
r
.f

r
ie

n
d
s
t
e
r

0

50

100

150

M
is

se
s-

P
e
r-

K
il

o
-I

n
st

ru
c
ti

o
n
s

LLC BASELINE L2C BASELINE LLC SDC+LP L2C SDC+LP

Fig. 8. MPKI of L2C and LLC relatively to theirs counterparts in the baseline.

We conduct a performance analysis considering MPKI rates
of both Baseline and SDC+LP to explain the large perfor-
mance improvements of SDC+LP. Figure 8 displays L2C and
LLC MPKI rates considering both the Baseline and the
SDC+LP approaches for each workload. Two stacked bars per
workload are depicted: the left-hand side bar represents MPKI
rates of Baseline, and the right-hand side bar represents
MPKI rates of SDC+LP. For each bar, the lower stack refers
to the LLC MPKI, and the total height refers to the L2C
MPKI. Therefore, the difference between the the lower stack
and the total bar height comes from accesses that miss in the
L2C and hit in the LLC. Similarly, Figure 9 shows MPKI
rates in the first-level caches of Baseline and SDC+LP.
The leftmost bar of each workload shows the L1D MPKI of
Baseline, while the rightmost bar of each workload presents
the accumulated MPKI of the L1D and the SDC of SDC+LP.
These two figures present the workloads sorted in ascending
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order in terms of the speed-up provided by the SDC+LP design
as shown on Figure 7.
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Fig. 9. Comparison of hits and misses in the L1D and the SDC using the
baseline design and the SDC+LP design.

Figure 8 indicates that SDC+LP significantly reduces the
pressure on both L2C and LLC with respect to Baseline.
Indeed, average MPKI rates drop from 44.5 and 41.8
(Baseline) to 4.4 and 2.8 (SDC+LP) for L2C and LLC,
respectively. Figure 9 shows that SDC handles the vast major-
ity of the misses experienced by the L1D in the Baseline
configuration. The Average MPKI rate of L1D decreases from
53.2 (Baseline) to 7.4 (SDC+LP) while the SDC experi-
ences an average MPKI rate of 48.3. These measurements
illustrate how the LP predictor successfully identifies cache
averse accesses and redirects them to the SDC, avoiding
pollution of the contents of L1D, L2C and LLC caches, and
eliminates useless cache lookups for cache averse accesses.
These two effects decrease the latencies of cache averse
accesses, since they do not waste time in useless cache look-
ups, and cache friendly accesses, since cache lines that serve
them do not suffer from evictions due to insertions of cache
averse data. These two effects combined explain the large
benefits of SDC+LP.

B. Design Space Exploration

1) SDC Size: We evaluate different SDC sizes (8KB, 16KB,
and 32KB) and their performance impact. The SDC sizes are
associated with varying associativities and latencies: the 8KB
SDC is 2-way set associative with a 1-cycle latency, while the
16KB and 32KB SDCs are 4-way and 8-way set associative
with 3-cycle and 4-cycle latencies, respectively. LP parameters
from Table I are used. Figure 10a shows that increasing the
SDC size results in only marginal reductions in SDC MPKI,
with rates of 50.5, 49.1, and 48.0 for 8KB, 16KB, and 32KB
SDCs, respectively. Figure 10b reveals that while the 32KB
and 16KB SDCs have fewer misses than the 8KB SDC, they
offer slightly smaller performance benefits due to their longer
latencies. In contrast, the 8KB SDC offers fast cache look-ups,
with only a slight increase in MPKI.

2) LP Organization: We evaluate the performance impact
of the two most important LP configuration parameters: (i)
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(a) SDC MPKI ratios considering 8KB, 16KB, and 32KB of storage.
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(b) Performance improvement of SDC+LP for 8KB, 16KB and 32KB SDCs.

Fig. 10. Exploration on the size of the SDC.
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Fig. 11. Speed-up of SDC+LP considering a fully-associative LP with
different entry counts.

number of entries of the LP prediction table; and (ii) associa-
tivity of the table.

Figure 11 shows SDC+LP’s performance improvements
against Baseline with fully-associative LP prediction tables of
varying sizes (8, 16, 32, and 64 entries), resulting in gains of
13.7 %, 17.9 %, 20.7 %, and 20.7 %, respectively. Figure 12
explores different LP prediction table associativities (from
direct-mapped to fully-associative) using a 32-entry table,
achieving performance boosts of 17.0 %, 20.3 %, 20.7 %,
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Fig. 12. Speed-up of SDC+LP considering different LP associativities.
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Fig. 13. Speed-up over Baseline of SDC+LP and the Expert
Programmer approach, which manually categorizes cache averse and cache
friendly accesses.

and 20.7 %. Notably, the 8-way design approaches optimal
results.

3) Global Threshold: We assess the impact of the LP global
threshold, τglob, over a range of values from 0 to 256. A
τglob of 0 routes all memory accesses to the SDC, while a
large value like 256 directs all accesses to the L1D, akin
to the Baseline scenario. Our analysis encompasses the
GAP benchmarks and the broader SPEC 2006 [2] and SPEC
2017 [3] benchmark suites to ensure that SDC+LP doesn’t
adversely affect general-purpose workloads. We determine that
setting τglob to 8 yields significant performance gains for
graph-processing workloads like GAP benchmarks (20.3 %
improvement over Baseline) while maintaining the per-
formance of general-purpose workloads like SPEC (0.5 %
improvement over Baseline).

C. Comparison with An Expert Programmer

We compare SDC+LP with Expert Programmer, an
approach that relies on a judicious analysis of performance
data to identify data structures that display either cache averse
or cache friendly memory access patterns. The SDC+LP
configuration parameters are described in Table I. Expert
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Fig. 14. Performance improvement of SDC+LP and other considered scenar-
ios with respect to the Baseline architecture in a multi-core scenario.

Programmer uses an 8KB SDC configured as Table I
describes. Figure 13 shows how Expert Programmer
achieves a 19.1% performance improvement over Baseline,
while SDC+LP achieves 20.3%. These results confirm that
the LP predictor is able to distinguish between cache averse
and cache friendly memory accesses and achieve very similar
performance as an expert-driven approach where cache averse
accesses are identified via analyzing performance data. The
performance improvement of SDC+LP over Baseline is
very close to the one achieved by Expert Programmer
for a large portion of the 36 considered workloads. However,
SDC+LP outperforms Expert Programmer on scenarios
where graph connectivity is very heterogeneous and accesses
to graph data are sometimes cache averse and sometimes cache
friendly, like bc.road. Alternatively, Expert Programmer
outperforms SDC+LP in scenarios where setting the τglob to
8 is not adequate, like pr.web.

D. Multi-Core Evaluation

This section evaluates in the multi-core context the perfor-
mance of SDC+LP and four additional hardware approaches:
T-OPT, Distill Cache, L1D 40KB ISO, and 2xLLC.
Each core contains its own private SDC+LP. Figure 14 shows
the performance of all evaluated designs across a set of
the 50 multi-thread graph-processing workloads described in
Section IV-D. The y-axis shows the performance improvement
over Baseline, while the x-axis shows the 50 considered
workloads sorted in terms of the improvement achieved by
SDC+LP over Baseline. Figure 14 also displays the ge-
ometric mean performance improvement of all considered
scenarios in terms of bars. Section IV-D describes how we
compute performance in multi-core scenarios.

Figure 14 reveals that the L1D 40KB ISO and Distill
Cache approaches achieve very similar performance to
Baseline. Their geometric mean speed-ups are 0.02% and -
0.04%, respectively. T-OPT achieves remarkable performance
gains, particularly for one third of the workloads. T-OPT
reaches 6.4% geometric mean improvement over the baseline.
The 2xLLC scenario provides improvements above 5% for
10 workloads and achieves a 2.4% geometric mean speed-up
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Entries Bits per entry Total KB
SDC 128 512 data + 42 tag + 1 valid + 1 dirty 8.69
LP 32 65 tag + 58 address + 14 stride + 1 valid 0.54
SDCDir 128 42 tag + 6 state + 1 sharer per core 0.77

TABLE IV
HARDWARE BUDGET PER CORE

over the Baseline. SDC+LP outperforms all considered sce-
narios as it provides a 20.2% improvement over Baseline.
SDC+LP achieves very remarkable performance improvements
above 20% for one third of the multi-thread workloads, and
reaches a maximum speed-up of 69.3%.

E. Hardware Cost and Power Considerations

Table IV details the hardware budget per core of each
element of the SDC+LP proposal, assuming an architecture
with 48-bit physical addresses. The total hardware budget of
SDC+LP is 10KB per core. The most expensive structure in
terms of area is the SDC, with a total hardware budget of 8.69
KB per core. The other two structures, LP and SDCDir, have
very small area requirements of only 0.54 KB and 0.77 KB
per core, respectively.

Furthermore, we employ CACTI [44] to evaluate the typical
access time of LP. Utilizing the 22nm technology, we observe
that LP’s typical access time is estimated to be as low as
0.24ns. In comparison, our experimental setup (cf., Table I)
implies that a CPU cycle spans over 0.46ns (i.e., the CPU
clock frequency being 2.166GHz). Consequently, accessing LP
comfortably fits within a single CPU cycle.

The remarkably brief timing requirements of LP present
the opportunity for seamless integration into the memory
pipeline, causing minimal disruption. We propose accessing
LP during the same cycle as the Address Generation Unit
(AGU), immediately after generating the memory address (a
process involving a simple addition and shift) and preceding
the parallel access to the TLB, L1D, or SDC. Notably, LP’s
leakage power is below 10mW, and its read/write accesses
consume only 0.010 nJ/0.015 nJ, further underscoring its
efficiency and suitability for integration.

A power consumption analysis of the SDCdir indicates that
this structure consumes 0.014 nJ and 0.019 nJ during read and
write operations, respectively. Similarly, the SDC consumes
0.026 nJ and 0.034 nJ per read and write access, respectively.

VI. RELATED WORK

In the recent years, numerous designs have been proposed
to accelerate the irregular accesses of graph-processing appli-
cations. In Section V we compared our proposal to the most
relevant published works available to date. This section com-
ments on additional works on graph-processing workloads.

Replacement Policies. Recent literature proposes various
complex cache replacement policies [23], [26], [40], [46],
which enhance general-purpose computing applications but
struggle with graph-processing workloads, as shown in recent
research [24]. To address cache management challenges, re-
searchers have explored cache-bypassing and reuse prediction

techniques. Cache bypassing selectively prevents certain mem-
ory blocks from entering caches to avoid evicting valuable
data, while reuse prediction prioritizes cache block eviction
based on future reuse predictions, resulting in substantial
performance gains.

Hardware Prefetching. Stream and strided cache prefetch-
ers struggle with indirect memory access patterns in graph-
processing workloads [8], [9]. Yu et al. [48] propose IMP,
Ainsworth et al. [6] introduce an application-level prefetcher,
and Basak et al. [9] present DROPLET, which considers reuse
distances for different graph types. These hardware prefetchers
can saturate memory bandwidth. In contrast, our approach
optimizes graph memory access latency through efficient path
routing and has the potential for enhanced performance when
combined with existing prefetching techniques, which we
leave for future work.

Memory System Optimizations for Graph-Processing. Re-
cent research emphasizes memory hierarchy optimization for
graph-processing workloads. Ozdal et al. [36] and Gonzalez
et al. [19] employ scratchpads, including a large eDRAM
scratchpad for larger graph data. Previous studies [5], [17],
[32], [42], [49] reduce graph memory latency through near-
memory computing. Our approach complements these efforts
by enhancing memory management within the cache hierarchy.

The Distill Cache [39] optimizes L2C cache utilization by
storing used words from evicted cache lines, reducing cache
pollution. Our design categorizes memory accesses as regular
or irregular to address irregular access patterns.

Selective Cache [18] bypasses the L1D cache for memory
accesses lacking locality, while our approach leverages graph-
processing memory patterns to predict when DRAM can serve
accesses, optimizing the cache hierarchy for regular graph
processing while avoiding unnecessary look-ups.

Victim Cache [27] reduces conflict misses by storing evic-
tion victims but relies on spatial locality for insertion. In
contrast, our approach bypasses the cache hierarchy without
relying on locality assumptions when inefficiency is expected.

Pre-Processing Algorithms. Several pre-processing algo-
rithms have been proposed [7], [14], [45] to improve the local-
ity of graph-processing workloads. Although effective, these
pre-processing works are orders of magnitude more expensive
compared to the runtime of a single traversal [31]. Our work
aims at reducing the latency cost of single traversals by routing
each memory access to the most appropriate memory path.

Graph-Processing Accelerators. Several prior efforts have
developed graph-processing accelerators [15], [21], [34]–
[36] to address memory bottlenecks, introducing specialized
logic and memory optimizations for improved performance.
However, these approaches depend on costly pre-processing
methods, as discussed above. More recently, Mukkara et
al. [31] introduce a hardware-accelerated traversal scheduler
that replaces pre-processing with an efficient online locality-
aware scheduler. Our work is distinct from graph-processing
acceleration.
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VII. CONCLUSION

In this paper, we reveal that conventional cache hierarchies
are underutilized by graph-processing workloads, with 78.6 %
of L1D misses cascading into L2C and LLC, resulting in costly
DRAM accesses. We also observe that DRAM-served memory
accesses often exhibit long strides compared to the last access
with the same program counter (PC). In response, we propose
SDC+LP, a cost-effective solution that eliminates unnecessary
L2C and LLC look-ups for cache-averse memory accesses.
SDC+LP consists of two components: the Side Data Cache

(SDC), a per-core auxiliary set-associative cache placed along-
side L1D, and the Large Predictor (LP), a low-cost microar-
chitectural predictor that distinguishes regular from irregular
memory accesses based on historic stride knowledge. Com-
bining SDC with LP results in a 20.3 % geometric mean
speed-up over the baseline and an additional 10.9 % geometric
mean speed-up compared to T-OPT, a state-of-the-art cache
management scheme for graph-processing workloads, in the
single-core context. In multi-core scenarios, our proposal
achieves a 20.2 % speed-up over the baseline and an additional
13.8 % compared to T-OPT.

Our study emphasizes that hardware approaches capable
of distinguishing between regular and irregular cache-averse
memory references can significantly enhance the performance
of workloads characterized by large memory footprints and
data-driven memory access patterns.
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