
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

To Cross, or Not to Cross Pages for Prefetching?
Georgios Vavouliotis† Marti Torrents∗ Boris Grot†§ Kleovoulos Kalaitzidis† Leeor Peled∗∗ Marc Casas∗‡

Computing Systems Lab, Huawei Zurich Research Center†

Boole Lab, Huawei Tel-Aviv Research Center∗∗

Barcelona Supercomputing Center∗ Universitat Politecnica de Catalunya‡ University of Edinburgh§

{georgios.vavouliotis, boris.grot, kleovoulos.kalaitzidis, leeor.peled}@huawei.com, {marti.torrents, marc.casas}@bsc.es

Abstract—Despite processor vendors reporting that cache
prefetchers operating with virtual addresses are permitted to
cross page boundaries, academia is focused on optimizing cache
prefetching for patterns within page boundaries. This work
reveals that page-cross prefetching at the first-level data cache
(L1D) is seldom beneficial across different execution phases and
workloads while showing that state-of-the-art L1D prefetchers
are not very accurate at prefetching across page boundaries.

In response, we propose MOKA, a holistic framework for
designing Page-Cross Filters, i.e., microarchitectural schemes that
ensure effective and accurate prefetching across page boundaries.
MOKA combines (i) hashed perceptron predictors that use
prefetcher-independent program features, (ii) predictors that
adapt decisions based on the system state (e.g., TLB pressure),
and (iii) a scheme to dynamically optimize predictions across
different execution phases and workload types. We use the
MOKA framework to prototype a Page-Cross Filter, named
DRIPPER, for three relevant L1D prefetchers (Berti [60], IPCP
[61], BOP [57]). We show that DRIPPER accurately enables page-
cross prefetching only when it is beneficial for performance. For
instance, Berti [60] (state-of-the-art prefetcher) combined with
DRIPPER improves single-core geomean performance over Berti
that always permits page-cross prefetches and Berti that always
discards page-cross prefetches by 1.7%(1.2%) and 2.5%(2.1%)
across 218 seen (178 unseen) workloads, respectively. Across 300
8-core mixes, the corresponding geomean speedups are 2.0%
and 3.3%. Finally, we show that DRIPPER provides consistent
benefits when both 4KB pages and 2MB large pages are used.

I. INTRODUCTION

Modern microarchitectural designs [1], [3], [6], [8], [29],
[35], [37], [51], [55], [79], [80], [84] implement multiple
hardware prefetchers to attenuate the Memory Wall bottleneck
[56], [94]. Recent industrial reports [3], [8] highlight that
advances in hardware prefetching are responsible for a large
portion of the IPC uplifts between processor generations.

Cache prefetchers proposed by the academic commu-
nity [13], [19], [22], [38], [48], [57], [60], [61], [76], [81] are
typically restricted to identify and prefetch for memory access
patterns within page boundaries and discard prefetch requests
that cross pages. In contrast, CPU vendors permit prefetchers
placed alongside Virtually Indexed Physically Tagged (VIPT)
caches [15], i.e., prefetchers operating with virtual addresses,
to cross page boundaries [3], [8], [29], [35]. However, they
do not provide additional information about their page-cross
prefetching strategy. They do not disclose whether they con-
stantly permit page-cross prefetching or use dedicated runtime
techniques to optimize it.

Page A

... ...
Page B

... ...

page-cross prefetchin-page prefetch

BL
O
C
Ki

BL
O
C
Kj

Fig. 1: In-page and page-cross prefetch requests.

Crossing pages for prefetching, depicted in Figure 1, is a
high-risk, high-gain technique. Accurate page-cross prefetch-
ing can provide great performance gains since it increases
Translation Lookaside Buffer (TLB) and cache hits, reduces
the number of demand page walks, and potentially improves
the timeliness of prefetching. Inaccurate page-cross prefetch-
ing significantly harms performance since it pollutes both the
cache and the TLB, triggers useless memory accesses (up
to 4 memory accesses for the speculative page walk and 1
memory access to serve the cache prefetch request), increases
the dynamic energy, and harms prefetching timeliness.

This paper argues for more attention to page-cross prefetch-
ing and presents the first study on characterizing the properties
of page-cross prefetching for VIPT caches using three state-of-
the-art L1D prefetchers (Berti [60], IPCP [61], BOP [57]) and
a diverse set of 396 workloads. We show that (i) static policies
for page-cross prefetching, i.e., policies that always permit or
always discard page-cross prefetches, are seldom beneficial for
performance, (ii) constantly permitting page-cross prefetching
provides performance gains over the policy that always dis-
cards page-cross prefetches only for a subset of the considered
workloads; the opposite behavior is observed for the rest of the
workloads, and (iii) state-of-the-art L1D prefetchers have low
accuracy with respect to page-cross prefetching, highlighting
that a scheme able to ensure accurate and effective page-cross
prefetching has the potential to provide significant benefits.

Based on our findings, we propose MOKA, a framework
for designing effective and fully legacy preserving Page-Cross
Filters for prefetchers operating with virtual addresses, i.e.,
uarch filters that predict the usefulness of page-cross prefetch
requests ensuring that only useful page-cross prefetches will
be issued. The MOKA framework provides (1) a set of hashed
perceptron predictors [17], [85] realized with prediction tables
indexed with prefetcher-independent program features (e.g.,
PC), (2) a set of simple predictors that take into account
the system state (e.g., TLB pressure) when deciding whether
to permit or not a page-cross prefetch, and (3) an adaptive

scheme that optimizes predictions across execution phases and
workload types by tuning the decision thresholds at runtime.

We prove the versatility of the MOKA framework by using
it to prototype a Page-Cross Filter, named DRIPPER, for three
state-of-the-art L1D prefetchers (Berti [60], IPCP [61], BOP
[57]). DRIPPER improves performance for all considered L1D
prefetchers across a set of 396 workloads (218 seen, 178
unseen) since it accurately predicts the usefulness of page-
cross prefetch requests and issues only the useful ones.

In summary, this paper makes the following contributions:
• We provide the first study on page-cross prefetching for

VIPT caches using three L1D prefetchers (Berti [60],
IPCP [61], BOP [57]) and a set of 396 workloads (218
seen, 178 unseen). This study highlights that constantly
issuing page-cross prefetches is seldom beneficial across
different execution phases and workload types.

• We propose MOKA, a framework for designing Page-
Cross Filters for prefetchers placed alongside VIPT
caches. MOKA comes with a variety of prefetcher-
independent program features, system features that take
into account the system state in the decision making, and
a scheme that tunes the activation threshold at runtime.

• We use the MOKA framework to prototype a Page-Cross
Filter, named DRIPPER, for all considered prefetchers
(Berti, IPCP, BOP). For example, Berti combined with
DRIPPER improves single-core geomean performance
over Berti that always permits page-cross prefetches
and Berti that always discards page-cross prefetches by
1.7%(1.2%) and 2.5%(2.1%) across 218 seen (178 un-
seen) workloads, respectively. Across 300 random 8-core
mixes, the corresponding geomean speedups are 2.0%
and 3.3%. We show that DRIPPER provides consistent
benefits when both 4KB and 2MB pages are used.

II. MOTIVATION

This section shows that whether page-cross prefetching for
first-level caches is beneficial for performance varies on a
workload by workload basis. We also provide evidence that a
scheme able to dynamically decide when to permit or discard
page-cross prefetches has the potential to provide great gains.
This study targets L1D prefetchers and not lower-level cache
prefetchers because first-level caches have direct access to the
virtual memory subsystem as opposed to lower-level caches.

A. Cache Prefetching and Page Boundaries

1) First-Level Caches and Page-Cross Prefetching: L1D
prefetchers [14], [19], [57], [60], [61], [76], [81] drive
prefetching using virtual addresses because first-level caches
are typically implemented as VIPT structures. Patterns that
are easy to detect in the virtual address space might be hard
to detect in the physical address space, since two addresses
which are contiguous in the virtual address space might be
separated by large distances in the physical address space [48].
Conceptually, L1D prefetchers can cross page boundaries since
they have direct access to the TLB [2], [3], [8]. However, there
is a critical question to answer: What should L1D prefetchers

do when the translation of the page where the prefetched block
resides is not present in the TLB? Should they discard the
prefetch or initiate a page table walk to fetch the corresponding
translation from the page table? Triggering page walks for
page-cross prefetch requests is a high-risk technique since it
may incur up to 5 useless memory accesses (up to 4 memory
accesses for the speculative page walk [12] and 1 memory
access to serve the cache prefetch request) if the page-cross
prefetch request is inaccurate. Therefore, inaccurate page-cross
prefetching greatly harms performance due to the additional
memory accesses introduced and the pollution caused to the
TLB and cache hierarchy. On the other hand, accurate page-
cross prefetching can provide significant benefits since it
improves the efficacy of cache prefetching and reduces the
number of TLB misses by prefetching address translations in
the TLB ahead of demand memory accesses.

2) Lower-Level Caches and Page-Cross Prefetching: Pre-
fetchers placed alongside lower-level caches (L2C, LLC) [18],
[20], [42], [48], [49], [71], [77], [92], [93] drive prefetching
decisions using physical addresses since these caches are
implemented as Physically Indexed Physically Tagged (PIPT)
structures [15]. These prefetchers typically permit prefetching
only within physical page boundaries for security reasons since
physical address contiguity is not guaranteed [89]. Therefore,
allowing page-cross prefetching in the physical address space
could introduce new side channels that an adversary could
exploit to attack the system [23], [36]; a recent study [90]
reveals how to exploit page-cross prefetching at lower-level
caches to attack recent Apple processors.

B. Trends on Page-Cross Prefetching

1) Academic Viewpoint: Recent literature has proposed nu-
merous L1D prefetchers [14], [19], [57], [60], [61], [76], [81].
These works typically design new prefetchers that correlate
cache accesses with more features than prior designs to capture
more distinct patterns. Academic L1D prefetchers are mainly
restricted to prefetch within page boundaries and they are not
optimized for crossing page boundaries, although they have
direct access to the virtual memory subsystem (Section II-A).

2) Industrial Viewpoint: Limiting L1D prefetchers to
prefetch within page boundaries provides suboptimal gains
when the prefetchers are able to accurately perform page-
cross prefetching. While academic works still restrict L1D
prefetchers to prefetch within page boundaries, vendors permit
L1D prefetchers to prefetch across page boundaries [3], [8],
[29], [35]. Page-cross prefetches need to go through the TLB
hierarchy and potentially initiate page walks that fetch in the
TLB the translations of the pages where the prefetched blocks
reside; Section II-A presents the pros and cons of page-cross
prefetching. However, vendors do not provide additional in-
formation. It is unclear whether vendors follow a static policy
that always permits page-cross prefetching or use techniques
to coordinate prefetching across page boundaries.

There is no prior work on analyzing and characterizing
page-cross prefetching for first-level caches.

101

101

101

101

101

10-

-

-

1

Fig. 2: IPC gains of Berti, BOP, and IPCP when they always permit page-cross prefetching (Permit PGC) over a baseline that
does not permit the respective prefetcher to cross page boundaries (Discard PGC) across a set of memory-intensive workloads.

C. Analyzing Page-Cross Prefetching

This section quantifies the performance impact of page-
cross prefetching using the ChampSim simulator [5], [34].
Section IV describes in detail the simulation infrastructure. To
provide broad conclusions, we consider three well-established
L1D prefetchers: Berti [60], IPCP [61], and BOP [57]. Re-
garding the workloads, we use memory-intensive benchmarks
spanning various benchmark suites: SPEC 2006 [9], SPEC
2017 [10], GAP [16], LIGRA [78], PARSEC [11], and Geek-
Bench [7]. We also evaluate industrial integer and floating
point workloads provided by Qualcomm for CVP-1 [4], [30].
Our main evaluation campaign (Section V) considers a larger
workload set (396 workloads in Section IV-A).

Qualitatively, page-cross prefetching has the potential to
provide significant performance gains when it is performed
accurately since it can (i) improve the efficacy and timeliness
of prefetching and (ii) reduce the number of TLB misses
since it prefetches address translations in the TLB. To answer
whether L1D prefetchers are effective at prefetching across
page boundaries, we evaluate two different versions of all
considered prefetchers. The first version always permits the
underlying prefetcher to issue page-cross prefetches (Permit
PGC) and the second version always discards prefetch requests
that cross page boundaries (Discard PGC). Figure 2 presents
the IPC improvements of all considered prefetchers when
combined with Permit PGC over a baseline that does not
permit the respective L1D prefetcher to cross page boundaries
(Discard PGC) across the considered workloads.

Looking at Figure 2, we observe that always permit-
ting page-cross prefetching (Permit PGC) behaves differently
across different workloads; this holds for all Berti, BOP,
and IPCP. Focusing on Berti, we observe that Berti with
Permit PGC significantly outperforms Berti with Discard
PGC for certain workloads (e.g., astar, cc.road, MIS,
vips, qmm_int_365, gkb5_101). This happens because
Berti accurately crosses pages for these benchmarks, which

improves the timeliness of prefetching and increases the TLB
hit rate. The opposite behavior, i.e., Berti with Discard PGC
outperforms Berti with Permit PGC, is observed for bench-
marks like sphinx3, fotonik3d_s, bc.web, pr.web,
qmm_int_859, qmm_fp_44, and gkb5_310. For these
workloads, allowing Berti to constantly cross pages brings
performance degradation over the conservative scenario that
permits prefetching only within page boundaries (Discard
PGC). This happens because each useless page-cross prefetch
of Berti introduces up to 5 useless memory accesses (4 for the
speculative page walk and 1 for the actual prefetch request).
As a result, Berti increases the pressure on the cache hierarchy
that results in cache and TLB pollution. We observe similar
behavior for BOP and IPCP prefetchers. The main takeaway
of this study is that there is no single static strategy for page-
cross prefetching (Permit PGC, Discard PGC) that performs
best across all workloads.

Always permitting page-cross prefetching may increase
or decrease performance over the scenario that always
discards page-cross prefetches across different workloads.

Figure 3 complements the results of Figure 2 by quantifying
the usefulness of page-cross prefetching in the scenario that
always permits page-cross prefetching (Permit PGC) across
the same workloads and prefetchers used in Figure 2. To do
so, Figure 3 divides the issued page-cross prefetches into two
categories: (i) useful page-cross prefetches, i.e., prefetches
that provided at least one hit during their lifetime in the
cache and (ii) useless page-cross prefetches, i.e., prefetches
that did not provide any hit during their lifetime in the cache.
Figure 3 (left) shows the distribution of useful and useless
page-crossing prefetches across all workloads and prefetchers
while Figure 3 (right) presents the average percentages of
useful and useless page-crossing prefetches. Looking at the
distributions, we observe all types of possible behaviors.
There are workloads for which (i) the vast majority of page-

 Berti BOP IPCP
0

50

100

Pe
rc

en
ta

ge
 (%

)
Useful PGC Prefetches Useless PGC Prefetches

Be
rtiBO
P

IPC
P

0

50

100

Av
er

ag
e

Pe
rc

en
ta

ge
 (%

)

Fig. 3: Distribution (left) and average percentage (right) of
useful and useless page-cross prefetches across the same
workloads and prefetchers used in Figure 2. In Figure 3
(left), each workload is represented by one green and one red
marker showing the percentages of useful and useless page-
cross prefetches, respectively, which are summed to 100%.

cross prefetches are useful (green markers ∼100%), (ii) most
page-cross prefetches are useless (red markers ∼100%), and
(iii) some page-cross prefetches are useful and some useless.
Focusing on the averages, we observe that ∼50% of the issued
page-cross prefetches are useful (the rest are useless); this
holds true across all considered prefetchers. We conclude that
state-of-the-art L1D prefetchers are not very accurate at page-
cross prefetching. When they do it accurately and effectively
(e.g., tc.road and qmm_int_13 in Figure 2), they signif-
icantly improve performance over the scenario that does not
permit page-cross prefetching. However, inaccurate page-cross
prefetching (e.g., sphinx3 in Figure 2) significantly harms
performance due to the additional page walks required and the
TLB and cache pollution introduced.

To explain why for some workloads Permit PGC outper-
forms Discard PGC and for others the opposite behavior is
observed (Figure 2), we consider the state-of-the-art L1D
prefetcher, Berti, and we split the workloads used in Figure 2
in two categories: (i) workloads for which Permit PGC out-
performs Discard PGC and (ii) workloads for which Discard
PGC outperforms Permit PGC. Figure 4a and 4b analyze the
impact of Berti with Permit PGC on dTLB1 MPKI, sTLB1

MPKI, L1D MPKI, and LLC MPKI over Berti with Discard
PGC for workload categories (i) and (ii), respectively.

Focusing on the workloads for which Permit PGC out-
performs Discard PGC (Figure 4a), we observe a significant
decrease in dTLB MPKI and a small decrease in sTLB MPKI
because for this set of workloads Berti effectively crosses
page boundaries, thus reducing TLB pressure. dTLB MPKI
is more sensitive to page-cross prefetching than sTLB MPKI
because dTLB is smaller than sTLB, as Section IV shows,
and translations brought by page-cross prefetches are stored
in both dTLB and sTLB structures, thus a useful page-cross
prefetch that hits in dTLB does not impact the sTLB MPKI.
Focusing on the cache MPKIs of Figure 4a, we observe a
large L1D MPKI reduction since Berti accurately prefetches
across page boundaries for this workload set. This L1D MPKI
reduction translates to an LLC MPKI reduction, justifying why

1For the rest of the paper, we use the terms dTLB and sTLB to refer to
the first-level data TLB and last-level TLB, respectively.

−10
−8
−6
−4
−2

0

dT
LB

 M
PK

I I
nc

re
as

e
ov

er
 D
is
ca

rd
 P
G
C

−0.5

0.0

0.5

sT
LB

 M
PK

I I
nc

re
as

e
ov

er
 D
is
ca

rd
 P
G
C

−20

−15

−10

−5

0

L1
D

 M
PK

I I
nc

re
as

e
ov

er
 D
is
ca

rd
 P
G
C

−1.0

−0.5

0.0

LL
C

M
PK

I I
nc

re
as

e
ov

er
 D
is
ca

rd
 P
G
C

(a) Workloads of Figure 2 for which Permit PGC outperforms
Discard PGC. Each bullet represents a workload.

0

5

10

15

20

dT
LB

 M
PK

I I
nc

re
as

e
ov

er
 D
is
ca

rd
 P
G
C

0.0

0.5

1.0

1.5

2.0

sT
LB

 M
PK

I I
nc

re
as

e
ov

er
 D
is
ca

rd
 P
G
C

0

10

20

L1
D

 M
PK

I I
nc

re
as

e
ov

er
 D
is
ca

rd
 P
G
C

0

5

10

LL
C

M
PK

I I
nc

re
as

e
ov

er
 D
is
ca

rd
 P
G
C

(b) Workloads of Figure 2 for which Discard PGC outperforms
Permit PGC. Each bullet represents a workload.

Fig. 4: Impact of Permit PGC on DTLB MPKI, STLB MPKI,
L1D MPKI, and LLC MPKI over Discard PGC for Berti
prefetcher. Reported results are raw MPKIs.

Berti with Permit PGC outperforms Berti with Discard PGC
for this set of workloads.

Regarding the workloads for which Discard PGC outper-
forms Permit PGC (Figure 4b), we observe the opposite
trends than the workloads for which Permit PGC outperforms
Discard PGC (Figure 4a). Berti does not effectively prefetch
across page boundaries for this set of workloads, significantly
increasing dTLB, sTLB, L1D, and LLC MPKIs, justifying
why Discard PGC outperforms Permit PGC for these work-
loads. The increase in dTLB MPKI is higher than the sTLB
MPKI increase because inaccurate cross-page prefetches have
a higher impact on dTLB than sTLB since the former is
smaller than the latter. The same applies for L1D and LLC.

The main takeaway of this study is that optimizing page-
cross prefetching has the potential to provide significant bene-
fits. An adaptive mechanism capable of accurately deciding
whether a given page-cross prefetch is useful or not, and
thus issue or discard the corresponding prefetch request, can
significantly improve the effectiveness of cache prefetchers
and the overall performance of the system.

A scheme able to accurately enable page-cross prefetch-
ing only when is beneficial has the potential to deliver
significant performance enhancements.

1) Putting Everything Together: Our analysis across three
well-established L1D prefetchers (Berti, IPCP, BOP) and a set
of memory-intensive workloads demonstrates that (i) there is
significant performance on the table by optimizing page-cross
prefetching and (ii) state-of-the-art L1D prefetchers are not
very accurate at page-cross prefetching. Our findings motivate
the need for a dynamic microarchitectural mechanism that
enables page-cross prefetching only when it is proven to be
beneficial for performance.

III. PAGE-CROSS PREFETCH FILTERING

This work introduces MOKA, a new framework for design-
ing effective Page-Cross Filters that ensure accurate prefetch-
ing across page boundaries. MOKA consists of microarchi-
tectural predictors that leverage (1) various program features
(e.g., PC) to predict the usefulness of prefetches that cross page
boundaries, (2) various system features (e.g., sTLB MPKI) to
take into account the system state when deciding whether to
issue or not a page-cross prefetch, and (3) an adaptive scheme
that tunes the decision thresholds at runtime to ensure accurate
predictions across different execution phases and workloads.

A. Design Overview

Figure 5 illustrates the design and the high-level operation
of the MOKA framework assuming a VIPT L1D [12], [15].
Upon L1D accesses, the L1D prefetcher produces prefetch
requests. For each prefetch request, MOKA checks whether
it is a page-cross prefetch or not A . The Page-Cross Filter
is activated only for prefetches that cross page boundaries B
and decides whether to issue or not the corresponding requests.
Prefetches that pass the Page-Cross Filter need to go through
the TLB hierarchy to find the translation of the page where
the prefetched block resides C . If the requested translation
is not TLB resident, a speculative page walk is triggered to
bring the corresponding translation in the TLB hierarchy D .
Finally, the page-cross prefetch is issued and eventually the
corresponding prefetched block is stored in L1D.

B. Hardware Components of the Page-Cross Filter

The Page-Cross Filter, designed using the MOKA frame-
work, uses five hardware components to decide whether to
permit or discard a page-cross prefetch (step B in Figure 5):

Perceptron Predictors. The MOKA framework provides
hashed perceptron predictors [17], [85] realized with Weight
Tables (WTs) storing perceptron weights associated with se-
lected program features; the perceptron weights are imple-
mented with saturating counters [32], [35], [44]–[47], [58],
[59], [72], [85], [86]. The Page-Cross Filter uses one hashed
perceptron predictor for each selected program feature. Section
III-D1 presents the considered program features.

Saturating Counters for System Features. The MOKA
framework also provides system features, i.e., features that
associate the usefulness of page-cross prefetching with the
system state (e.g., TLB pressure). System features contribute
on predicting whether a page-cross prefetch is useful or not by
taking into account the system state in the decision making of
the Page-Cross Filter. System features are implemented with
saturating counters; we name them system feature weights.
Section III-D2 presents the considered system features.

Virtual Update Buffer (vUB). MOKA uses vUB for training
purposes. vUB is responsible for capturing false negatives,
i.e., cases where the Page-Cross Filter erroneously discarded
a page-cross prefetch that would have saved a demand L1D
miss if it was issued. Each vUB entry stores the virtual address
of a page-cross prefetch that the Page-Cross Filter decided

L1D L2C/LLC/DRAM

B

A

page-cross prefetch

TLB
L1D
Pref

D

Page
Cross?

C

Weights for
System Features

Page-Cross Filter
p@ hash

...
WTn

v@ hash

SF1 SFn...

pUB

WT1 WTn

vUB

Weight Tables (WT)
for Program Features

Virtual Update
Buffer (vUB)

Physical Update
Buffer (pUB)

Adaptive
Thresholding Scheme

yesprefetch request

Fig. 5: Overview of the MOKA framework.

not to issue coupled with the corresponding hash index to
ensure correct updating of the weights (for both program and
system features). Note that vUB stores virtual addresses since
L1D prefetchers operate with virtual addresses. Section III-C2
describes the contribution of vUB in the training of both
program and system features.

Physical Update Buffer (pUB). The Page-Cross Filter uses
pUB to ensure correct updating of the weights (for both
program and system features) depending on the usefulness
of the issued page-cross prefetches. A page-cross prefetch is
considered useful when it serves at least one L1D demand
access before eviction; otherwise, it is considered useless. To
do so, pUB entries store the physical addresses of page-cross
prefetches that the Page-Cross Filter decided to issue coupled
with the corresponding hash indexes. Note that pUB stores
physical addresses (and not virtual addresses as vUB) for
training purposes as it updates the weights upon L1D evictions
and L1Ds are physically-tagged (Section III-C2).

Adaptive Thresholding Scheme. To determine the useful-
ness of a page-cross prefetch, the Page-Cross Filter compares
a cumulative weight (sum of program feature weights and
system feature weights) with a threshold; prefetches with cu-
mulative weights higher than the threshold are issued while the
others are discarded (Section III-C1). Using a static threshold
provides suboptimal gains due to workload heterogeneity and
phase-changing behaviors. The MOKA framework employs an
epoch-based mechanism (Section III-C3) that exploits various
runtime information (e.g., LLC pressure) to tune the threshold
used in decision making.

C. Operation

1) Prediction: Upon an L1D prefetch that crosses page
boundaries (step B in Figure 5), the Page-Cross Filter
is activated to predict the usefulness of the corresponding
prefetch request and decide whether to issue or discard it.
Figure 6 shows the decision making of the Page-Cross Filter.

wfinal

w1

wn

Program Features

WeightSF1

System Features (SF)

WeightSFn

...

SF1?Tsf1

SFn?Tsfn

wi

wn

w
sf
1

w
sf
n

Σ

Program
Feature1

Hash
index

...
Program
Featurei

Hash
index

...

Program
Featuren

Hash
index >Ta

Issue Cross-
Page Prefetch

Discard Cross-
Page Prefetch

Y

Y

1

2

3

4

N

Y

...

cnt

WT1
cnt

...

cnt

WTi
cnt

...

cnt

WTn
cnt

Fig. 6: Prediction operation of the Page-Cross Filter.

The prediction happens in four stages. The first stage 1
consists of three steps. First, the Page-Cross Filter extracts
the set of selected program features (Section III-D1) from the
current load request. Then, each feature is hashed and used to
index the corresponding WT. After indexing, a weight (wi) is
retrieved from each WT. The same procedure takes place for
all program features. The second stage 2 checks if any of
the system features (Section III-D2) has to be considered in
the decision making. To do so, it computes the value of each
system feature (e.g., sTLB MPKI) and compares it with a
threshold (SFn?Tsfn in Figure 6); if the system feature value
(SFn) exceeds (or subceeds, depending on the feature) the
associated threshold (Tsfn), then the corresponding weight
(weightSFn) is taken into account in the decision making.
Note that system features contribute to the final decision only
during specific phases, i.e., when SFj?Tsfj (? could be >
or <, depending on the feature). Section III-D2 presents the
rationale behind system features. The third stage 3 sums the
weights of all considered program and system features and
generates the final weight (wfinal). Then, wfinal is compared
with an activation threshold Ta 4 . If wfinal is greater than
Ta, the page-cross prefetch is issued; otherwise it is discarded.

2) Training: To ensure correct updating of both program
and system feature weights, MOKA uses two structures:
the Virtual Update Buffer (vUB) and the Physical Update
Buffer (pUB), presented in Section III-B. Moreover, MOKA
augments each L1D block with an additional bit, named Page
Cross Bit (PCB), indicating whether the block has been fetched
in L1D by a page-cross prefetch or not.

The training of the Page-Cross Filter is triggered upon L1D
demand accesses and L1D evictions. Figure 7 depicts the
training operation across all trigger events. Upon L1D demand
misses 1 , vUB is searched for possible hits 2 . A vUB hit
3 indicates that the corresponding page-cross prefetch was
erroneously discarded by the Page-Cross Filter, thus the hash
indexes of the hit vUB entry are used to increment the respec-

PCB=1? Search pUB
Negative Training
of System Feature

Weights

SF1?Tsf1 ... SF1?Tsfn

Y

Negative Training of
Weight Tables (WTs)

...

WT1 WTi WTn

...
#Hits = 0 Y

9

8
11

10

L1D
Eviction

--
--

--

L1D Block

PCB

L1D

L1D Lookup

PCB=1?

Hit

Search
pUB

pUB

p@ hash

Positive Training of
System Feature Weights

Miss Search
vUB

Hit

Hit

vUB

v@ hash
Positive Training of
Weight Tables (WTs)

SF1?Tsf1 SF1?Tsfn...

1 2

3

4
65

7

Demand
Memory
Access

...

WT1 WTi

...++
++

++
WTn

Y

Hit

Fig. 7: Training of the Page-Cross Filter.

tive program and system weights (positive training), increasing
the probability of issuing (permitting) the corresponding page-
cross prefetch in the future. Similarly, when a demand request
hits in L1D 4 and the hit block has its PCB set, i.e., the
block was fetched by a useful page-cross prefetch, the pUB is
looked up 5 . Upon pUB hits 6 , the hash indexes of the hit
pUB entry are used to increase the weights of the respective
program and system features 7 .

Upon an L1D eviction of a block with PCB set 8 , the Page-
Cross Filter checks whether the evicted block has provided at
least one hit during its lifetime in the cache 9 . If not, pUB is
searched to find the matching entry 10 since pUB stores the
physical addresses and the hash indexes of the issued page-
cross prefetches; this is the reason why pUB stores physical
addresses and not virtual addresses as vUB (Section III-B).
The hash indexes of the matching pUB entry are used to
decrease the respective program and system weights (negative
training) 11 since evicted L1D blocks that did not provide
any hit indicate that the Page-Cross Filter failed to classify
the corresponding page-cross prefetches as useless.

3) Adaptive Thresholding Scheme: During the third stage of
the prediction (3 in Figure 6), the Page-Cross Filter compares
the cumulative weight (wfinal) with the activation threshold
Ta (Section III-C1). A static threshold Ta is adequate when
targeting to improve the performance of a specific application
type, but it provides suboptimal gains when the target is
multiple diverse application domains. We empirically find
that different application profiles and execution phases have
different optimal Ta values. To address this, we design an
epoch-based adaptive scheme that takes into account various
heuristics to dynamically adjust the activation threshold Ta.

Figure 8 presents the operation of the adaptive thresholding
scheme. During an epoch, the following runtime statistics
(step i in Figure 8) are collected and used to tune Ta:
number of useful and useless page-cross prefetches, IPC,
LLC miss rate, ROB pressure, and L1I MPKI. In addition to
the collection of statistics, during an epoch the thresholding

Accuracy
< T2 IPC Drop

Accuracy
Drop

Accuracy
Increase

Ta++ Ta--

Ta= tmTa= tm
Accuracy

< T1
Ta= th

ROB = full High
MSHR.occ

Ta= th
Accuracy

< T1
Ta= th

High LLC
Latency

High LLC
MissRate

L1I MPKI
> TL1i

Stats Collection

Discard
Cross-Page

Prefs
Ta= tm

Extremes Detection

Accuracyprev_epoch
>/<

Accuracycurr_epoch

IPCprev_epoch < IPCcurr_epoch

i

iv iii

ii

v

vi

vii

Uselful Page-Cross Prefetches Useless Page-Cross Prefetches ...

EPOCHj-1
EP

O
C

H
j

(m
ea

su
re

d
in

 #
 c

ro
ss

-p
ag

e
pr

ef
et

ch
es

)

EPOCHj+1

Fig. 8: Operation of the Adaptive Thresholding Scheme.

scheme detects extreme behaviors, i.e., phases with very high
cache and ROB pressure and adjusts the value of Ta on
the spot. Specifically, it sets Ta to a high threshold (th) to
only permit page-cross prefetches with very high confidence
ii in the following cases: (1) there is high ROB pressure

and many inflight L1D misses and (2) the accuracy of page-
cross prefetching has reached a low value (T1). Moreover, the
thresholding scheme sets Ta to a medium value (tm) when
there is high L1I pressure (L1i MPKI>TL1i) iii to avoid
exacerbating the contention between page-cross prefetches and
demand instruction accesses in the L2C. Finally, during phases
with very high LLC pressure, the thresholding scheme disables
page-cross prefetching iv ; if LLC pressure drops, then page-
cross prefetching might be activated again thanks to vUB’s
operation (Section III-C2).

At the end of an epoch, the thresholding scheme potentially
updates Ta using the runtime information collected during the
previous epoch. Specifically, it takes into account the accuracy
of page-cross prefetching v and it forces a medium or high
threshold when the accuracy is lower than the thresholds
T2 and T1, respectively. Moreover, if there is an increase
(decrease) in page-cross prefetching accuracy between two
consecutive epochs vi , the thresholding scheme increases
(decreases) the Ta value by one. Finally, if there is a drop
in IPC between two consecutive epochs vii , the thresholding
scheme sets Ta to tm (if Ta was lower than tm).

D. Bouquet of Features

1) Program Features: The MOKA framework comes with
a wide range of program features that can be used to design
a Page-Cross Filter for any given prefetcher. In total, MOKA
contains 55 program features crafted using our expertise as
well as prior work in domain [17], [47]. Table I presents
the subset of program features, identified by offline feature
exploration, that (i) correlate best with page-cross prefetch-

Program Features

•VA •VA≫12 •VA≫21 •CacheLineOffset •PC
•PC+CacheLineOffset •VAi-2⊕VAi-1⊕VAi
•(VAi-2≫12)⊕(VAi-1≫12)⊕(VAi≫12)
•(PCi-2⊕PCi-1⊕PCi) •PC⊕VA
•PC⊕(VA≫12) •VA⊕Delta •PC⊕Delta
•(VA≫12)⊕Delta •PC⊕FirstPageAccess
•VA⊕FirstPageAccess •(VA≫12)⊕FirstPageAccess
•CacheLineOffset+FirstPageAccess •Delta+FirstPageAccess

System Features •L1D MPKI •L1D Miss Rate •LLC MPKI •LLC Miss Rate
•sTLB MPKI •sTLB Miss Rate

TABLE I: Best performing program and system features.

ing patterns and discard harmful for performance page-cross
prefetches and (ii) provide the highest performance gains in
isolation among the evaluated prefetchers. Table I reveals
that most program features use different bits of the virtual
address, PC, and the delta used by the prefetcher when
issuing page-cross prefetches. Note that the MOKA frame-
work contains program features that are not specialized to
a specific prefetcher but are transparent to which prefetcher
is used. Crafting specialized features that exploit metadata
of specific prefetchers (e.g., lookahead) has the potential to
further improve the effectiveness of a Page-Cross Filter. Our
work does not focus on a specific prefetcher but rather provides
a holistic scheme for effective page-cross prefetching.

2) System Features: Program features (Section III-D1) are
critical for the accuracy and the performance of a Page-Cross
Filter. However, they do not take into account the system state
(e.g., TLB/cache pressure) in their decision making. In other
words, a page-cross prefetch that has been proven useful (use-
less) in the past might be useless (useful) during different exe-
cution phases with different properties. The MOKA framework
considers 6 system features, presented in Table I, to capture
these scenarios. Each system feature is implemented with a
saturating counter and monitors the usefulness of page-cross
prefetching in different phases. For example, the sTLB Miss
Rate system feature monitors the usefulness of page-cross
prefetching during phases where the sTLB Miss Rate is above
a pre-defined threshold (SFsTLB_missrate>TsTLB_missrate).

3) Combining Features: The feature selection process takes
place offline and uses IPC speedup as optimization metric.2

First, we quantify the IPC speedups of each program and
system feature in isolation by evaluating 60 different single-
feature Page-Cross Filters (Table I) across 218 seen workloads
(Section IV-A). Then, features are sorted in increasing order
of geomean IPC speedup. The final round combines different
features to further increase the IPC gains. We start with an
initial set that contains only the best performing feature. Then,
we examine whether considering additional features improves
geomean IPC speedup. If a new feature proves to be useful,
i.e., improves geomean IPC by more than 0.3% over the
best configuration so far, it is included in the set of selected
features. We follow the same procedure until all features have
been examined. This process is repeated for each prefetcher
considered.

2Alternative optimization metrics are page-cross prefetching coverage and
accuracy. We do not use coverage because different misses have different
criticality for performance. We do not optimize for accuracy because it often
leaves performance on the table due to the requirement of high accuracy.

Berti [60] Delta, sTLB MPKI, sTLB Miss Rate
BOP [57] PC⊕Delta, sTLB MPKI, sTLB Miss Rate
IPCP [61] PC⊕Delta, sTLB MPKI, sTLB Miss Rate

TABLE II: DRIPPER features per considered prefetcher.

E. DRIPPER: A Page-Cross Filter Prototype

The MOKA framework can be used to design Page-Cross
Filters for any given prefetcher. To prove the versatility of
MOKA, we use it to prototype a Page-Cross Filter for three
L1D prefetchers (Section V-A) by following the feature se-
lection process described in Section III-D3. We refer to these
Page-Cross Filter prototypes as DRIPPER. Table II presents
the selected features of DRIPPER for all L1D prefetchers.

We observe that all DRIPPER configurations (Table II) use
one program feature and two system features. The same system
features (sTLB MPKI, sTLB Miss Rate) are selected for all
considered prefetchers, while two prefetchers (BOP, IPCP)
also have in common the used program feature (PC⊕Delta).
The rationale behind the selected features is the following:

• Delta. This program feature uses the delta used by the L1D
prefetcher to issue a page-cross prefetch and learns whether
specific deltas are beneficial or not when they are used to
generate page-cross prefetch requests.

• PC⊕Delta. This program feature is computed by XOR-ing
the PC with the delta used by the prefetcher to issue a page-
cross prefetch and provides information of whether a certain
PC favors specific delta(s) used for page-cross prefetching.

• sTLB MPKI. This system feature correlates phases with
low sTLB MPKI rates (SFsTLB_mpki<TsTLB_mpki) with the
usefulness of page-cross prefetching. The core idea behind
this feature is that when sTLB MPKI is low, the probability
of a page-cross prefetch request hitting in the TLB hierarchy is
high (the probability of triggering a page walk is low). Hence,
if page-cross prefetching is useful/useless during these phases,
this feature makes DRIPPER more/less aggressive towards
page-cross prefetching by increasing the final cumulative
weight (step 3 , Figure 6). This system feature contributes
to the decision making only when SFsTLB_mpki<TsTLB_mpki.

• sTLB Miss Rate. This system feature is complementary
to the sTLB MPKI system feature since it targets phases with
high sTLB pressure whereas the sTLB MPKI system feature
targets phases with low sTLB pressure. We use the sTLB
Miss Rate metric instead of the sTLB MPKI metric to capture
phases with high sTLB pressure since the former is more
sensitive to changes than the latter. This system feature mea-
sures the usefulness of page-cross prefetching during phases
with high sTLB Miss Rate (SFsTLB_missrate>TsTLB_missrate)
to identify missed opportunities that other features cannot
capture. The core idea is that when most demand memory ac-
cesses miss in the sTLB, permitting the L1D prefetcher to trig-
ger page-cross prefetches might improve the sTLB hit rate due
to the page walks introduced for page-cross prefetches. Hence,
if page-cross prefetching is proven useful during phases with
high sTLB Miss Rate, this feature increases the probability that
DRIPPER will permit page-cross prefetching. This feature is
used only when SFsTLB_missrate>TsTLB_missrate.

1) Storage Overhead: Table III presents the storage over-
head of DRIPPER. This overhead is the same across all
evaluated L1D prefetchers (Section V-A) since their DRIPPER
versions use one program and two system features (Table II).
In total, DRIPPER requires 1.44KB of storage per core; the
number of WT, vUB, and pUB, entries are empirically selected
after tuning. DRIPPER aims at low storage overheads to make
its implementation feasible for a real design. A design that can
dedicate tens of KBs for a Page-Cross Filter can use additional
features from Table I that improve performance for a few
workloads but their impact on geomean IPC speedup is small.

Program Features 1×512×5bits 0.625KB

System Features sTLB MPKI: 5bits, sTLB MissRate: 5bits 0.00125KB

vUB, pUB 4×(36+12)bits, 128×(36+12)bits 0.024KB, 0.768KB

Total 1.44KB

TABLE III: Storage overhead of DRIPPER.

IV. EXPERIMENTAL METHODOLOGY

We evaluate our proposal using the ChampSim simula-
tor [5], [34], modeling 1-core and 8-core out-of-order proces-
sors with 3-level cache hierarchy [60], [89] and a decoupled
front-end [41], [70]. We simulate a 5-level radix tree page
table, an x86 hardware page table walker [24], and split Page
Structure Caches [21], [67]. The hardware page table walker
models (i) the variant latency cost of page walks, (ii) the
page walk references to memory hierarchy, and (iii) the cache
locality in page walks. Prefetching for data/instructions is
applied upon L1D/L1I accesses with prefetched blocks filled in
the corresponding cache. We evaluate different L1D prefetch-
ers to show the versatility of our proposal. No prefetching
is applied at the lower-level caches [8] but Section V-B7
provides evaluation when lower-level cache prefetchers are
used. Table IV presents our experimental setup in detail.

Simulated Page Sizes: Our evaluation is mainly focused on
4KB pages, similar to prior work [60], [61]. Section V-B6
presents evaluation when the system utilizes both 4KB and
2MB large pages, using the methodology of prior work [89].

A. Workloads
We evaluate our proposal using a diverse set of workloads,

spanning various benchmark suites and workload domains.
We use (i) general purpose workloads from SPEC CPU
2006 [9], [40], SPEC CPU 2017 [10], and Geekbench [7],
[50] benchmark suites, (ii) big memory footprint workloads
included in the GAP [16] and Ligra [78] benchmark suites,
(iii) parallel workloads from PARSEC [11], and (v) industrial
integer and floating point workloads provided by Qualcomm
for the 1st Contest on Value Prediction (CVP-1) [4], [30]. For
the rest of the paper, we use SPEC, GKB5, QMMINT, and
QMMFP to refer to the SPEC CPU 2006 and SPEC CPU 2017,
Geekbench, Qualcomm integer, and Qualcomm floating point
workloads, respectively. All traces were obtained using the
SimPoint methodology [68]. SimPoints with a weight smaller
than 0.05 are discarded and we report weighted geomean
speedups [17], [18], [47], [57], [60], [61], [63], [89].

CPU Core 1-8 cores, 4GZ, 352-entry ROB, 6-wide issue,
hashed perceptron branch predictor [85]

L1I TLB (iTLB) 64-entry, 4-way, 1-cycle lat, 8-entry mshr, LRU
L1D TLB (dTLB) 64-entry, 4-way, 1-cycle lat, 8-entry mshr, LRU
L2 TLB (sTLB) 1536-entry, 12-way, 8-cycle lat, 16-entry mshr, LRU
Page Structure 4-level Split PSC, parallel search, 1-cycle lat.
Caches (PSCs) L5: 1-entry, L4: 2-entry, L3: 8-entry, L2: 32-entry
L1I Cache 32KB, 8-way, 4-cycle lat, 8-entry mshr, LRU, fnl-mma [75]
L1D Cache 48KB, 12-way, 5-cycle lat, 16-entry mshr, LRU
L2 Cache 512KB, 8-way, 10-cycle lat, 32-entry mshr, LRU
LLC (per core) 2MB, 16-way, 20-cycle lat, 64-entry mshr, LRU
DRAM 4GB (single-core), 16GB (8-core), 3200MT/s

TABLE IV: System Configuration.

Our main experimental campaign focuses on workloads
with an LLC MPKI of at least 1 as we consider them
memory-intensive. We use 396 workloads which we split
into two categories: (i) 218 workloads that were used during
the development of our proposal, DRIPPER, and (ii) 178
unseen workloads that we did not take into account during
the design of DRIPPER. Section V-B8 presents evaluation
for the unseen workloads. We also show that DRIPPER does
not harm the performance of non memory-intensive workloads
by presenting evaluation across the entire benchmark suites,
including the non-intensive workloads (Section V-B9).

1) Single-core Experiments: SPEC, GAP, PARSEC, and
LIGRA workloads run the first 250M instructions to warm up
the uarch structures and the subsequent 250M instructions are
executed to obtain the experimental results. GKB5 workloads
use variable warm-up and simulation instructions depending
on the simpoint length. Finally, for the Qualcomm workloads,
50M warm-up instructions and 100M simulation instructions
are used, similar to prior work [58], [87], [88].

2) Multi-core Experiments: Our multi-core evaluation con-
siders 300 randomly generated mixes from our workload set.
Our evaluation reports the weighted speedup over the baseline
[20], [47], [60], [89]. First, we compute the IPC on the multi-
core context and the IPC in isolation on a system with the
multi-core configuration for each application running on a
core. Next, we compute the weighted IPC as the sum of
(IPCmulticore/IPCisolation) for all workloads in the mix. Finally,
we normalize this sum with the weighted IPC of the baseline.
For each mix, when a core finishes its instructions, it gets
replayed until all the cores finish their respective instructions,
similar to prior work [17], [18], [47], [60], [61], [63], [89].

V. EVALUATION

A. DRIPPER for Different L1D Prefetchers

This section highlights the benefits and versatility of our
proposal by implementing a DRIPPER prototype for three
L1D prefetchers: Berti [60], IPCP [61], and BOP [57]. Sec-
tion III-E and Table II present the design and configuration
of DRIPPER for all considered prefetchers. We compare
DRIPPER against the following scenarios that exploit/optimize
page-cross prefetching:

• Permit PGC. The L1D prefetcher is constantly permitted
to issue page-cross prefetches, similar to Section II-C.

• Discard PGC. The L1D prefetcher is never permitted to
issue page-cross prefetches, similar to Section II-C.

Berti BOP IPCP−1

0

1

2

Ge
oM

ea
n

IP
C

Sp
ee

du
p

(%
)

ov
er

 D
is
ca

rd
 P
G
C

DiscardPGC

Permit PGC
Discard PTW

ISO Storage
PPF

PPF+DThr
DRIPPER

Fig. 9: Performance comparison between different schemes
that exploit page-cross prefetching. IPC speedups are com-
puted over a baseline that does not permit the L1D prefetcher
to cross page boundaries (Discard PGC).

• Discard PTW. The L1D prefetcher is permitted to cross
pages for prefetching only when the corresponding translation
is found in the TLB hierarchy; if not, the prefetch request is
discarded to avoid triggering a speculative page walk.

• ISO Storage. The storage overhead of DRIPPER (Section
III-E1) is used to enlarge the most relevant for performance
structure(s) of the underlying prefetcher (Berti, BOP, IPCP).
This scenario permits page-cross prefetching.

• Perceptron-based Prefetch Filtering (PPF) [20]. Origi-
nally, PPF uses program features to filter out inaccurate L2C
prefetches issued by the SPP prefetcher [48] which operates
in the physical address space. We convert PPF to work as a
page-cross filter for L1D prefetchers, excluding the program
features that are specialized to SPP’s metadata. Section VI
elaborates on the differences between our proposal and PPF.

• PPF+Dthr. PPF [20] uses a pre-defined threshold to
predict the usefulness of prefetches. We combine PPF with
the dynamic thresholding scheme of MOKA (Section III-C3)
to provide a direct comparison with DRIPPER.

Figure 9 compares DRIPPER with the considered scenarios
that exploit page-cross prefetching in terms of single-core
geometric mean performance over a baseline that does not
permit the L1D prefetcher to cross page boundaries (Discard
PGC) across all considered prefetchers (Berti, BOP, IPCP) and
a set of 218 workloads (Section IV-A). We use Discard PGC
as the baseline because prior L1D prefetchers are typically
restricted to prefetch within page boundaries. Figure 9 reveals
that DRIPPER provides the highest geomean IPC gains across
all considered scenarios. The main takeaways of this study are:

- The scenario that always discards page-cross prefetches
(Discard PGC) outperforms the scenario that always issues
page-cross prefetches (Permit PGC) because crossing pages
for prefetching is a high-risk technique; when it is inaccurate
can deteriorate performance. However, there are benchmarks
that enjoy great benefits when page-cross prefetching is per-
mitted, as Sections II-C and V-B indicate.

- The scenario that discards page-cross prefetches for which
the translation is not found in the TLB (Discard PTW) slightly
outperforms the Permit PGC scenario for Berti and IPCP
prefetchers (still lower than the performance of Discard PGC)
because it does not trigger speculative page walks for page-
cross prefetches that avoid polluting the cache and the TLB

Workloads sorted by DRIPPER's performance (each marker is a workload)−30
−20
−10

0
10
20
30

 IP
C

Sp
ee

du
p

(%
)

 o
ve

r D
is
ca

rd
 P
G
C

DiscardPGCDiscardPGC

Permit PGC DRIPPER

SPEC GAP PARSEC LIGRA GKB5 QMMINT QMMFP ALL
−3
−2
−1

0
1
2
3
4
5

Ge
oM

ea
n

 IP
C

Sp
ee

du
p

(%
)

 o
ve

r D
is
ca

rd
 P
G
C

DiscardPGC

Permit PGC DRIPPER

Fig. 10: Performance of Permit PGC and DRIPPER when
Berti is used at L1D over the same baseline as Figure 9.

in case of inaccurate page-cross prefetching. However, this
scenario leaves significant performance on the table when
page-cross prefetching is beneficial for performance.

- The ISO Storage scenario yields performance similar to the
Permit PGC scenario. We conclude that increasing the storage
budget of an L1D prefetcher does not improve its effectiveness
with respect to page-cross prefetching.

- PPF and PPF+Dthr do not improve performance over
Discard PGC. PPF fails to form an effective filter for page-
cross prefetching because (i) it does not consider system
features, i.e., features that take into account the system state in
the decision making (Section III-D2) and (ii) its set of program
features is suboptimal for page-cross prefetching.

- DRIPPER provides the highest IPC gains across the con-
sidered scenarios and prefetchers thanks to its effectiveness in
filtering useless page-cross prefetches. DRIPPER outperforms
(in geomean) PPF by 2.4%, 1.4%, and 1.6% when the L1D
prefetcher is Berti, BOP, and IPCP, respectively. DRIPPER
offers gains for all considered prefetchers since it uses pro-
gram and system features that correlate well with page-cross
prefetching and mostly issue beneficial-for-performance page-
cross prefetches. DRIPPER offers lower gains for BOP since
BOP has lower prefetching capabilities than IPCP and Berti.

B. Case Study: Berti Prefetcher

This section quantifies the gains of DRIPPER at a finer
granularity than Section V-A and justifies its benefits. To do
so, it focuses on the state-of-the-art L1D prefetcher, Berti.

1) Single-Core Performance: Figure 10 (top) presents the
performance of Berti when combined with the Permit PGC
scenario and DRIPPER over a baseline that uses Berti with
Discard PGC, similar to Figure 9, across all workloads. Figure
10 (bottom) shows the breakdown of the geomean speedups
across the considered benchmark suites over the same baseline.

Looking at Figure 10 (top), we observe that DRIPPER
provides higher performance gains than both Permit PGC
and Discard PGC scenarios for the vast majority of the
considered workloads since it accurately predicts the useful-
ness of the page-cross prefetch requests and issues only the
useful ones. Permit PGC slightly outperforms DRIPPER for

−20

0

20

40

60

Co
ve

ra
ge

 In
cr

ea
se

 (%
)

 o
ve

r D
is
ca

rd
 P
G
C Permit PGC DRIPPER

 SPEC GAP PARSEC LIGRA GKB5 QMMINT QMMFP ALL−15
−10
−5

0
5

10

Ac
cu

ra
cy

 In
cr

ea
se

 (%
)

 o
ve

r D
is
ca

rd
 P
G
C

Fig. 11: Coverage (top) and Accuracy (bottom) comparison
between Permit PGC and DRIPPER when Berti is used as
L1D prefetcher over the same baseline as Figure 9.

a few workloads because DRIPPER is conservative to page-
cross prefetching until it achieves high confidence. Moreover,
DRIPPER provides lower performance than Discard PGC for
a few workloads (tail in Figure 10 (top)) because DRIPPER
permits page-cross prefetching during a few phases that is
not beneficial for performance; this happens mostly for short-
running workloads (QMM INT and QMM FP).

Figure 10 (bottom) highlights that DRIPPER provides the
highest IPC gains across all considered benchmark suites.
Overall, DRIPPER outperforms Permit PGC and Discard PGC
by 2.5% and 1.7% in geomean, respectively. DRIPPER deliv-
ers the highest speedups over Discard PGC for the GAP suite
because these benchmarks put high pressure on both cache
and TLB hierarchies, thus effective page-cross prefetching
improves the timeliness of prefetching and reduces the address
translation overheads due to page walks introduced for page-
cross prefetches. Finally, Figure 10 (top, bottom) shows that
Permit PGC provides benefits for a subset of the workloads
but for most workloads it harms performance, justifying why
Discard PGC provides higher speedups in Figure 9.

2) Coverage and Accuracy: To explain the benefits of
DRIPPER, Figure 11 compares the miss coverage and
prefetching accuracy of Berti when combined with Permit
PGC and DRIPPER over Berti with Discard PGC across all
benchmark suites. Coverage and accuracy metrics consider all
prefetch requests (both in-page and page-cross prefetches).

Figure 11 (top) reveals that DRIPPER achieves almost the
same coverage results as the Permit PGC scenario in the
benchmark suites considered. Specifically, Berti with Permit
PGC and DRIPPER improves average miss coverage over Dis-
card PGC by 4.2% and 4.1% across all considered workloads,
respectively. The main takeaway is that DRIPPER can identify
which page-cross prefetches are useful and issue them.

Figure 11 (bottom) highlights that Berti with DRIPPER
achieves significantly higher accuracy than Berti with Per-
mit PGC; we observe the same trends across all considered
suites. Overall, DRIPPER improves the average accuracy over
Discard PGC by 1.2% while Permit PGC reduces prefetching
accuracy over Discard PGC by 2.6% across all workloads. The

Workloads sorted by DRIPPER's MPKI (each marker is a workload)−101

−100
0100

101

dT
LB

 M
PK

I
In

cr
ea

se
ov

er
D
is
ca

rd
 P
G
C

Permit PGC Discard PGC DRIPPER

Workloads sorted by DRIPPER's MPKI (each marker is a workload)−101

−100
0

100

101

sT
LB

 M
PK

I
In

cr
ea

se
ov

er
D
is
ca

rd
 P
G
C

Workloads sorted by DRIPPER's MPKI (each marker is a workload)
−101

−1000
100

101

L1
D

 M
PK

I
In

cr
ea

se
ov

er
D
is
ca

rd
 P
G
C

Workloads sorted by DRIPPER's MPKI (each marker is a workload)−101

−100
0

100

101

LL
C

M
PK

I
In

cr
ea

se
ov

er
D
is
ca

rd
 P
G
C

Fig. 12: Impact of Permit PGC and DRIPPER on dTLB, sTLB,
L1D, and LLC MPKIs when Berti is used at L1D over Discard
PGC, similar to Figure 9). Reported results are raw MPKIs not
percentages. Lower is better.

bottom line is that DRIPPER accurately identifies the majority
of the useless page-cross prefetches and discards them.

The miss coverage and accuracy results of Figure 11 justify
the performance enhancements of DRIPPER, presented in
Figure 10. DRIPPER achieves the same coverage as Permit
PGC while increasing the accuracy of prefetching thanks to
accurately discarding useless page-cross prefetches.

3) Impact on TLBs and Caches: To further explain the
benefits of DRIPPER, Figure 12 compares the impact of
Berti+Permit PGC and Berti+DRIPPER on dTLB MPKI,
sTLB MPKI, L1D MPKI, and LLC MPKI over a baseline with
Berti+Discard PGC, similar to previous sections. Looking at
Figure 12, we observe the same trends as in Figure 10 (top).
Note that DRIPPER’s curves in Figure 12 and Figure 10 (top)
are flipped since the former shows MPKI increase (lower is
better) and the latter IPC speedups (higher is better).

DRIPPER provides higher reduction in dTLB, sTLB, L1D,
and LLC MPKIs than both Permit PGC and Discard PGC
for the vast majority of the workloads since it accurately
predicts the usefulness of page-cross prefetches, justifying its
performance, coverage, and accuracy gains (Figures 10 and
11). On average, DRIPPER reduces dTLB, sTLB, L1D, and
LLC MPKIs in absolute values over Discard PGC by 0.6, 0.1,
2.1, and 0.2, respectively. DRIPPER has a higher impact on
dTLB MPKI than sTLB MPKI since dTLB is smaller than
sTLB (Table IV), thus more sensitive to page-cross prefetch-
ing. Focusing on the L1D and LLC MPKIs, we observe a large
L1D MPKI reduction for many workloads. The L1D MPKI
reduction sometimes translates to an LLC MPKI reduction,
further explaining why DRIPPER outperforms Discard PGC
and Permit PGC scenarios. Permit PGC provides higher MPKI
reductions than DRIPPER for a few workloads because DRIP-

 Berti + Permit PGC Berti + DRIPPER
0

10

20

30

PG
C

Pr
ef

et
ch

es
Pe

r K
ilo

In
st

ru
ct

io
ns Useful PGC Prefetches

Useless PGC Prefetches

Fig. 13: Distribution of useful and useless page-cross
prefetches for Permit PGC and DRIPPER.

Workloads sorted by DRIPPER's performance (each marker is a workload)−20
−10

0
10
20
30

IP
C

Sp
ee

du
p

(%
)

ov
er

 D
is
ca

rd
 P
G
C Delta

STLB MPKI
STLB Miss Rate
DRIPPER

Fig. 14: Performance comparison between DRIPPER and its
constituent features, over the same baseline as Figure 9.

PER is conservative to page-cross prefetching until it reaches
high confidence. Finally, we note that DRIPPER increases
MPKIs over Discard PGC for a few workloads (head in Figure
12) because DRIPPER permits page-cross prefetching during a
few phases that is not beneficial for performance, as explained
in Section V-B1.

4) Usefulness of Page-Cross Prefetching: Figure 13 com-
plements Figure 11 by presenting the distribution of useful
and useless page-cross prefetches of Berti+Permit PGC and
Berti+DRIPPER, using the page-cross prefetches per kilo
instructions metric. There are two takeaways from this study.
First, the distribution of useful page-cross prefetches of Permit
PGC and DRIPPER is very similar, i.e., Permit PGC and
DRIPPER have almost the same number of L1D hits due
to page-cross prefetches, justifying the coverage results of
Figure 11 (top). Second, the distribution of useless page-cross
prefetches for DRIPPER is concentrated around zero while
the one for Permit PGC has much higher values, showing that
DRIPPER issues much fewer useless page-cross prefetches
than Permit PGC, justifying the accuracy results of Figure
11 (bottom). The bottom line is that DRIPPER has almost the
same number of useful page-cross prefetches and significantly
fewer useless page-cross prefetches than Permit PGC.

5) Comparison with Individual Features: Figure 14 com-
pares DRIPPER with its constituent features (Delta, sTLB
MPKI, sTLB Miss Rate in Table II). To do so, we implement
three page-cross filters. Each filter uses only one of DRIP-
PER’s constituent features. Results in Figure 14 are computed
over Discard PGC, similar to previous sections.

Looking at Figure 14, we observe that DRIPPER outper-
forms the single-feature page-cross filters for the vast majority
of the considered workloads since it manages to effectively
combine the benefits of its features. However, there are a few
QMM INT and QMM FP workloads for which DRIPPER
degrades performance over Discard PGC (negative tail in
Figure 14), for the same reasons outlined Section V-B1.

Figure 15 compares DRIPPER with another version of
DRIPPER that uses only the selected system features of Table

Workloads sorted by DRIPPER's performance (each marker is a workload)−10
0

10
20
30

IP
C

Sp
ee

du
p

(%
)

ov
er

 D
is
ca

rd
 P
G
C

DRIPPER-SF
DRIPPER

0

1

2

Ge
oM

ea
n

IP
C

Sp
ee

du
p

(%
)

ov
er

 D
is
ca

rd
 P
G
C

Fig. 15: Comparison between DRIPPER and a version of
DRIPPER that uses only the system features (DRIPPER-SF).

Workloads sorted by DRIPPER's performance (each marker is a workload)−20

−10

0

10

20

IP
C

Sp
ee

du
p

(%
)

ov
er

 D
is
ca

rd
 P
G
C

DiscardPGCDiscardPGC

Permit PGC DRIPPER (filter @ 2MB) DRIPPER

−1

0

1

2

Ge
oM

ea
n

IP
C

Sp
ee

du
p

(%
)

ov
er

 D
is
ca

rd
 P
G
C

Fig. 16: Performance of Permit PGC, DRIPPER (filter@2MB),
and DRIPPER when Berti is used as L1D prefetcher over a
baseline that uses both 4KB and 2MB pages. Speedups are
computed over Berti+Discard PGC, similar to Figure 9.

II, named DRIPPER-SF, to highlight the contribution of the
selected program feature in the performance results. Figure
15 shows that DRIPPER outperforms DRIPPER-SF for the
majority of the workloads (0.9% in geomean across 218
workloads) because it effectively combines the benefits of
systems features with the benefits of program features while
DRIPPER-SF does not consider any program feature.

6) Evaluation with Large Pages: This section considers
a system that uses both 4KB and 2MB pages, follow-
ing the methodology of Section IV. Figure 16 shows the
performance of Berti combined with (a) Permit PGC, (b)
DRIPPER(filter@2MB) that filters prefetch requests at (i) 4KB
boundaries when the block resides in a 4KB page and (ii)
2MB boundaries when the block resides in a 2MB page, and
(c) DRIPPER that filters prefetch requests at 4KB boundaries
no matter the size of the page where the block resides over
Berti with Discard PGC. Note that Permit PGC scenario is
aware of the page size, thus it is equivalent to the proposal of
[89] but operating in the virtual address space.

Figure 16 shows similar trends with previous sections.
DRIPPER delivers higher IPC uplifts than both Permit PGC
and Discard PGC for most workloads when both 4KB and
2MB pages are used (2.2% and 1.3% in geomean). DRIP-
PER outperforms DRIPPER(filter@2MB) by 0.5% in geomean
because for blocks residing in 2MB pages DRIPPER stills
decides about filtering prefetch requests at 4KB boundaries
while DRIPPER(filter@2MB) decides about filtering prefetch
requests at 2MB boundaries that limits its potential since there
are only a few cases where the prefetcher is so aggressive to
cross 2MB boundaries for a given access. This would require
the prefetcher to start from a given 4KB page and cross 512
4KB pages to apply for a 2MB boundary crossing. We measure
that more than 99% of page-cross prefetches across all tested
prefetchers do not cross 2MB boundaries, thus filtering at

NoL2Pref SPP IPCP BOP
−1

0

1

2

Ge
oM

ea
n

IP
C

Sp
ee

du
p

(%
)

ov
er

D
is
ca

rd
 P
G
C

Berti+Permit PGC Berti+DRIPPER

Fig. 17: Performance comparison when different L2C
prefetchers (x-axis) are used in the baseline. Results are
computed over Berti with Discard PGC, similar to Figure 9.

Workloads sorted by DRIPPER's performance (each marker is a workload)
−101

−1000
100

101

IP
C

Sp
ee

du
p

(%
)

ov
er

D
is
ca

rd
 P
G
C

DiscardPGC

Permit PGC DRIPPER

Fig. 18: Performance of Berti combined with Permit PGC and
DRIPPER over Berti with Discard PGC for unseen workloads.

2MB boundaries performs similarly to Permit PGC scenario
when the block resides in a 2MB page. DRIPPER provides the
highest IPC gains across the considered approaches because
it continues to accurately predict the usefulness of prefetch
requests that cross 4KB boundaries no matter the size of the
page where the prefetched block resides. For accurately filtered
prefetch requests that cross 4KB boundaries it eliminates (i)
both sTLB and cache pollution when the block resides in a
4KB page and (ii) cache pollution when the block resides
in a 2MB page. Finally, DRIPPER provides slightly lower
performance than Permit PGC for a few workloads because
DRIPPER is conservative until it reaches high confidence
and provides lower performance than Discard PGC for a few
workloads because DRIPPER permits page-cross prefetching
during a few phases that is harmful for performance, similar to
Figure 10. The main takeaway of this study is that DRIPPER
is also effective when both 4KB and 2MB pages are used.

7) Impact of L2C Prefetching: Previous sections present
evaluation over a baseline without an L2C prefetcher. This
section quantifies the impact of L2C prefetching on DRIP-
PER’s performance. Figure 17 presents the geomean speedups
of Berti combined with Permit PGC and Berti combined with
DRIPPER over Berti combined with Discard PGC when the
baseline uses different L2C prefetchers: NoL2Pref, SPP [48],
IPCP [61], and BOP [57]. The trends are consistent with previ-
ous sections; Permit PGC degrades performance over Discard
PGC and DRIPPER provides the highest speedups no matter
which L2C prefetcher is used. The benefits of DRIPPER are
slightly higher when there is no L2C prefetcher than when
an L2C prefetcher is used because the L2C prefetcher saves
misses that Berti’s page-cross prefetching could also capture
in the absence of an L2C prefetcher.

8) Unseen Workloads: This section quantifies the impact
of DRIPPER on 178 unseen workloads (Section IV-A) which
were not used during DRIPPER’s design (Table II). Figure
18 presents the IPC speedups of Berti when combined with

Seen Unseen All (Seen+Unseen+Non-Intensive)
Berti+Permit PGC -0.8% -0.9% -0.6%

Berti+DRIPPER +1.7% +1.2% +0.4%

TABLE V: Geomean speedups over Berti+Discard PGC across
seen, unseen, and non-intensive workloads.

Permit PGC and DRIPPER over Berti with Discard PGC
across all unseen workloads. Overall, the trends for the unseen
workloads are similar to the ones of the seen workloads
(Figure 10): (i) Permit PGC provides benefits for only a subset
of the unseen workloads, (ii) DRIPPER outperforms both
Permit PGC and Discard PGC for most unseen workloads, and
(iii) there are a few QMM INT and QMM FP workloads for
which Discard PGC outperforms DRIPPER. Overall, DRIP-
PER outperforms (geomean) Permit PGC and Discard PGC
by 2.1% and 1.2% for the unseen workloads, respectively.
This study demonstrates that DRIPPER provides significant
IPC gains for workloads that it has not been optimized for.

9) Non-Intensive Workloads: We quantify the impact of
DRIPPER on non-intensive workloads by presenting evalu-
ation across the entire benchmark suites (Section IV-A). Table
V shows the geomean speedups of Berti with Permit PGC and
DRIPPER over Berti with Discard PGC across seen, unseen
(Section V-B8), and all workloads. We observe that (i) Permit
PGC performs poorly while DRIPPER provides benefits across
all workload sets, (ii) the speedups of DRIPPER are lower than
the ones reported when considering only the memory-intensive
workloads (seen, unseen) because the non-intensive workloads
lower the reported geomean speedups, and (iii) DRIPPER pro-
vides significant benefits for the intensive workloads without
harming the performance of non-intensive workloads.

10) Multi-Core Evaluation: This section quantifies the per-
formance benefits of DRIPPER in the 8-core context. Figure
19 presents the IPC speedup distributions of Berti when
combined with Permit PGC and DRIPPER over a baseline
with Berti and Discard PGC across 300 randomly generated
8-core mixes (Section IV-A). We observe that DRIPPER
improves performance over both Permit PGC and Discard
PGC for the vast majority of the 8-core mixes. Specifically,
DRIPPER improves geomean performance by 3.3% and 2.0%
over Permit PGC and Discard PGC, respectively, across 300
8-core mixes. Note that DRIPPER is not tuned in the 8-core
context; an exploration can provide even higher speedups.

VI. RELATED WORK

To the best of our knowledge, this is the first work on
analyzing and improving prefetching across page boundaries.

Prefetch Filtering. PPF [20] uses perceptrons to predict the
usefulness of L2C prefetches. The key differences between
PPF and DRIPPER are: (i) PPF uses only program features
while DRIPPER uses both program and system features, (ii)
PPF’s design is not versatile since it uses features specialized
to the SPP prefetcher [48], i.e., features that use metadata
specific to SPP that other prefetchers do not have while
DRIPPER uses only prefetcher-independent features, (iii) PPF

Berti+Permit PGC Berti+DRIPPER
−101

0

101

IP
C

Sp
ee

du
p

(%
)

ov
er

D
is
ca

rd
 P
G
C

DiscardPGC

Fig. 19: Distribution of 8-core speedups of Permit PGC and
DRIPPER over Discard PGC, similar to Figure 9.

uses a static activation threshold while DRIPPER uses a
scheme that adapts the activation threshold to different phases,
and (iv) PPF always discards page-cross prefetches. Lin et
al. [52] uses density vectors to predict the usefulness of
prefetches. Gamoudi et al. [31] collects runtime events during
sampling intervals which are used to turn on/off prefetching on
subsequent non-sampling intervals. Panda et al. [66] propose
a filter based on the weighted majority algorithm that uses
four table-based predictors [95], [96]; the prediction is taken
by comparing the confidence between positive and negative
predictors. These works discard page-cross prefetches and
optimize for in-page prefetches. Section V-A converts the
state-of-the-art prefetch filter for in-page prefetches, PPF [20],
to predict the usefulness of page-cross prefetches and shows
that PPF falls short at forming an effective page-cross filter.

Page Size Aware Prefetching. Prior work [89] reveals how
to exploit 2MB large pages to enable safe prefetching across
4KB physical page boundaries. This work does not optimize
page-cross prefetching but exposes the page size information
to the underlying prefetcher. Therefore, this work (i) does not
provide benefits if large pages are not used and (ii) blindly
permits the prefetcher to cross 4KB boundaries (assuming
the existence of large pages) without filtering useless prefetch
requests. Contrarily, our proposal provides consistent benefits
with and without 2MB large pages since it accurately filters
useless page-cross prefetches and is orthogonal to page-cross
prefetching in the physical address space. Finally, Section
V-B6 shows that DRIPPER significantly outperforms the pro-
posal of [89] when 2MB large pages are used.

Prefetch Management. Prior art [43], [73], [74], [83], [91]
lowers the prefetch-induced cache pollution by making cache
policies aware of prefetching. Another line of work [25]–[28],
[33], [39], [62], [64], [65], [69], [82], [83] uses heuristics to
tune prefetching aggressiveness. Prior work [53], [54], [63]
proposes predictors that permit prefetching only for critical
loads in many-core systems with constrained bandwidth.

VII. CONCLUSIONS

This work demonstrates the importance of optimizing page-
cross prefetching for first-level caches. In response, it proposes
MOKA, a framework for designing µarchitectural filters that
ensure effective and accurate page-cross prefetching. We use
the MOKA framework to prototype a page-cross filter, named
DRIPPER, and we show that DRIPPER significantly improves
the performance of various state-of-the-art L1D prefetchers
across an extensive set of workloads.

REFERENCES

[1] “AMD EPYC™ 7003 Processors,” https://www.amd.com/en/server-
docs/software-optimization-guide-for-amd-epyc-7003-processors-zip-
format.

[2] “ARM Cortex-A55 Core Technical Reference Manual r1p0,”
https://developer.arm.com/documentation/100442/0100/functional-
description/level-1-memory-system/data-prefetching?lang=en.

[3] “ARM Neoverse V2,” https://www.arm.com/products/silicon-ip-
cpu/neoverse/neoverse-v2#:∼:text=The%20Arm%20Neoverse%20V2%
20CPU,%2C%20power%2C%20and%20security%20enhancements.,
accessed: 05-9-2022.

[4] “Championship Value Prediction (CVP),” https://www.microarch.org/
cvp1/, accessed: 05-9-2022.

[5] “ChampSim,” https://crc2.ece.tamu.edu/, accessed: 05-9-2022.
[6] “Coffee Lake - Microarchitectures - Intel,” https://en.wikichip.org/wiki/

intel/microarchitectures/coffee lake, accessed: 05-9-2022.
[7] “Geekbench 5,” https://www.geekbench.com/blog/2019/09/geekbench-

5/.
[8] “Hot Chips 2023: Arm’s Neoverse V2,” https://chipsandcheese.com/

2023/09/11/hot-chips-2023-arms-neoverse-v2/, accessed: 05-9-2022.
[9] “SPEC CPU 2006,” https://www.spec.org/cpu2006/, accessed: 05-9-

2022.
[10] “SPEC CPU 2017,” https://www.spec.org/cpu2017/, accessed: 05-9-

2022.
[11] “PARSEC,” https://parsec.cs.princeton.edu/, 6666, accessed: 05-9-2022.
[12] Abishek Bhattacharjee, “Advanced Concepts on Address Translation,

Appendix L in ”Computer Architecture: A Quantitative Approach”
by Hennessy and Patterson,” http://www.cs.yale.edu/homes/abhishek/
abhishek-appendix-l.pdf.

[13] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying
memory access patterns for prefetching,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
513–526. [Online]. Available: https://doi.org/10.1145/3373376.3378498

[14] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo Spatial Data Prefetcher,” in Proceedings of the 25th
International Symposium on High Performance Computer Architecture,
ser. HPCA ’19, Feb 2019, pp. 399–411.

[15] A. Basu, M. D. Hill, and M. M. Swift, “Reducing Memory Reference
Energy with Opportunistic Virtual Caching,” in Proceedings of the 39th
International Symposium on Computer Architecture, ser. ISCA ’12,
2012, pp. 297–308.

[16] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP Benchmark
Suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available: http:
//arxiv.org/abs/1508.03619

[17] R. Bera, K. Kanellopoulos, S. Balachandran, D. Novo, A. Olgun,
M. Sadrosadat, and O. Mutlu, “Hermes: Accelerating long-latency load
requests via perceptron-based off-chip load prediction,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct 2022, pp. 1–18.

[18] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and
O. Mutlu, “Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning,” in Proceedings of the 54th
International Symposium on Microarchitecture, ser. MICRO ’21.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 1121–1137. [Online]. Available: https://doi.org/10.1145/3466752.
3480114

[19] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “DSPatch: Dual
Spatial Pattern Prefetcher,” in Proceedings of the 52nd International
Symposium on Microarchitecture, ser. MICRO ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 531–544.
[Online]. Available: https://doi.org/10.1145/3352460.3358325

[20] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-Based Prefetch Filtering,” in Proceedings of the
46th International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
1–13. [Online]. Available: https://doi.org/10.1145/3307650.3322207

[21] A. Bhattacharjee, “Large-reach Memory Management Unit Caches,” in
Proceedings of the 46th International Symposium on Microarchitecture,
ser. MICRO ’13. New York, NY, USA: ACM, 2013, pp. 383–394.
[Online]. Available: http://doi.acm.org/10.1145/2540708.2540741

[22] P. Braun and H. Litz, “Understanding memory access patterns for
prefetching,” 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:210184295

[23] Y. Chen, L. Pei, and T. E. Carlson, “Leaking Control Flow Information
via the Hardware Prefetcher,” CoRR, vol. abs/2109.00474, 2021.

[24] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: New microarchitecture code-named skylake,” IEEE Micro,
vol. 37, no. 2, pp. 52–62, 2017.

[25] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-aware shared-
resource management for multi-core systems,” in 2011 38th Annual
International Symposium on Computer Architecture (ISCA), 2011, pp.
141–152.

[26] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via source
throttling: A configurable and high-performance fairness substrate for
multicore memory systems,” ACM Trans. Comput. Syst., vol. 30, no. 2,
apr 2012. [Online]. Available: https://doi.org/10.1145/2166879.2166881

[27] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated control
of multiple prefetchers in multi-core systems,” in 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2009, pp. 316–326.

[28] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for Bandwidth-
Efficient Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” in Proceedings of the 15th International Symposium on High
Performance Computer Architecture, ser. HPCA ’09, 2009, pp. 7–17.

[29] M. Evers, L. Barnes, and M. Clark, “The amd next-generation “zen 3”
core,” IEEE Micro, vol. 42, no. 3, pp. 7–12, 2022.

[30] J. Feliu, A. Perais, D. Jimenez, and A. Ros, “Rebasing microarchitectural
research with industry traces,” in 2023 IEEE International Symposium
on Workload Characterization (IISWC). Ghent, Belgium: IEEE
Computer Society, Oct. 2023, pp. 100–114. [Online]. Available:
http://webs.um.es/aros/papers/pdfs/jfeliu-iiswc23.pdf

[31] O. Gamoudi, N. Drach-Temam, and K. Heydemann, “Using runtime
activity to dynamically filter out inefficient data prefetches,” in
European Conference on Parallel Processing, 2011. [Online]. Available:
https://api.semanticscholar.org/CorpusID:29391346

[32] E. Garza, S. Mirbagher-Ajorpaz, T. A. Khan, and D. A. Jiménez, “Bit-
level perceptron prediction for indirect branches,” in Proceedings of the
46th International Symposium on Computer Architecture, 2019, pp. 27–
38.

[33] A. Gendler, A. Mendelson, and Y. Birk, “A pab-based multi-prefetcher
mechanism,” Int. J. Parallel Program., vol. 34, no. 2, p. 171–188, apr
2006. [Online]. Available: https://doi.org/10.1007/s10766-006-0006-1

[34] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jimenez, E. Teran,
S. Pugsley, and J. Kim, “The championship simulator: Architectural
simulation for education and competition,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.14324

[35] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and A. Ghiya,
“Evolution of the Samsung Exynos CPU Microarchitecture,” in Proceed-
ings of the 47th International Symposium on Computer Architecture, ser.
ISCA ’20, 2020, pp. 40–51.

[36] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR,” in
Proceedings of the 23rd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 368–379. [Online].
Available: https://doi.org/10.1145/2976749.2978356

[37] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Suga-
vanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara,
G. Chiu, P. Boyle, N. Chist, and C. Kim, “The IBM Blue Gene/Q
Compute Chip,” IEEE Micro, vol. 32, no. 2, pp. 48–60, 2012.

[38] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning Memory Access Patterns,”
2018. [Online]. Available: https://arxiv.org/abs/1803.02329

[39] W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and
I. Hur, “Near-side prefetch throttling: adaptive prefetching for high-
performance many-core processors,” in Proceedings of the 27th
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’18. New York, NY, USA: Association for
Computing Machinery, 2018. [Online]. Available: https://doi.org/10.
1145/3243176.3243181

https://www.amd.com/en/server-docs/software-optimization-guide-for-amd-epyc-7003-processors-zip-format
https://www.amd.com/en/server-docs/software-optimization-guide-for-amd-epyc-7003-processors-zip-format
https://www.amd.com/en/server-docs/software-optimization-guide-for-amd-epyc-7003-processors-zip-format
https://developer.arm.com/documentation/100442/0100/functional-description/level-1-memory-system/data-prefetching?lang=en
https://developer.arm.com/documentation/100442/0100/functional-description/level-1-memory-system/data-prefetching?lang=en
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-v2#:~:text=The%20Arm%20Neoverse%20V2%20CPU,%2C%20power%2C%20and%20security%20enhancements.
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-v2#:~:text=The%20Arm%20Neoverse%20V2%20CPU,%2C%20power%2C%20and%20security%20enhancements.
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-v2#:~:text=The%20Arm%20Neoverse%20V2%20CPU,%2C%20power%2C%20and%20security%20enhancements.
https://www.microarch.org/cvp1/
https://www.microarch.org/cvp1/
https://crc2.ece.tamu.edu/
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://www.geekbench.com/blog/2019/09/geekbench-5/
https://www.geekbench.com/blog/2019/09/geekbench-5/
https://chipsandcheese.com/2023/09/11/hot-chips-2023-arms-neoverse-v2/
https://chipsandcheese.com/2023/09/11/hot-chips-2023-arms-neoverse-v2/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://parsec.cs.princeton.edu/
http://www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf
http://www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf
https://doi.org/10.1145/3373376.3378498
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3352460.3358325
https://doi.org/10.1145/3307650.3322207
http://doi.acm.org/10.1145/2540708.2540741
https://api.semanticscholar.org/CorpusID:210184295
https://api.semanticscholar.org/CorpusID:210184295
https://doi.org/10.1145/2166879.2166881
http://webs.um.es/aros/papers/pdfs/jfeliu-iiswc23.pdf
https://api.semanticscholar.org/CorpusID:29391346
https://doi.org/10.1007/s10766-006-0006-1
https://arxiv.org/abs/2210.14324
https://doi.org/10.1145/2976749.2978356
https://arxiv.org/abs/1803.02329
https://doi.org/10.1145/3243176.3243181
https://doi.org/10.1145/3243176.3243181

[40] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, Sep. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1186736.1186737

[41] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Re-establishing fetch-
directed instruction prefetching: An industry perspective,” in 2021 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2021, pp. 172–182.

[42] A. Jain and C. Lin, “Linearizing Irregular Memory Accesses
for Improved Correlated Prefetching,” in Proceedings of the 46th
International Symposium on Microarchitecture, ser. MICRO ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p.
247–259. [Online]. Available: https://doi.org/10.1145/2540708.2540730

[43] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate
prefetching,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), 2018, pp. 110–123.

[44] D. Jimenez, “Fast path-based neural branch prediction,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36., 2003, pp. 243–252.

[45] D. Jiménez and C. Lin, “Dynamic Branch Prediction with Perceptrons,”
in Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, ser. HPCA ’01, 2001, pp. 197–206.

[46] D. A. Jiménez, “Piecewise linear branch prediction,” in 32nd Interna-
tional Symposium on Computer Architecture (ISCA’05). IEEE, 2005,
pp. 382–393.

[47] D. A. Jiménez and E. Teran, “Multiperspective Reuse Prediction,” in
Proceedings of the 50th International Symposium on Microarchitecture,
ser. MICRO ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 436–448. [Online]. Available: https://doi.org/10.
1145/3123939.3123942

[48] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson,
and Z. Chishti, “Path confidence based lookahead prefetching,” in
Proceedings of the 49th International Symposium on Microarchitecture,
ser. MICRO ’16, 2016, pp. 1–12.

[49] S. Kumar and C. Wilkerson, “Exploiting Spatial Locality in Data Caches
Using Spatial Footprints,” in Proceedings of the 25th International
Symposium on Computer Architecture, ser. ISCA ’98, 1998, pp. 357–
368.

[50] W. Lee, J. Lee, B. K. Park, and R. Y. C. Kim, “Microarchitectural
characterization on a mobile workload,” Applied Sciences, vol. 11, no. 3,
2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/3/1225

[51] Levinthal D., “Performance analysis guide for intel core i7 pro-
cessor and intel xeon 5500 processors. Intel Performance Anal-
ysis Guide,” https://www.intel.com/content/dam/develop/external/us/en/
documents/performance-analysis-guide-181827.pdf.

[52] W.-F. Lin, S. Reinhardt, D. Burger, and T. Puzak, “Filtering super-
fluous prefetches using density vectors,” in Proceedings 2001 IEEE
International Conference on Computer Design: VLSI in Computers and
Processors. ICCD 2001, 2001, pp. 124–132.

[53] H. Litz, G. Ayers, and P. Ranganathan, “Crisp: critical slice
prefetching,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 300–313. [Online]. Available:
https://doi.org/10.1145/3503222.3507745

[54] R. Manikantan and R. Govindarajan, “Focused prefetching: performance
oriented prefetching based on commit stalls,” in Proceedings of the
22nd Annual International Conference on Supercomputing, ser. ICS ’08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
339–348. [Online]. Available: https://doi.org/10.1145/1375527.1375576

[55] Matthias Waldhauer, “New AMD Zen core details emerged,”
http://dresdenboy.blogspot.com/2016/02/new-amd-zen-core-details-
emerged.html, accessed: 05-9-2022.

[56] S. A. McKee, “Reflections on the Memory Wall,” in Proceedings of the
1st Conference on Computing Frontiers, ser. CF ’04. New York, NY,
USA: Association for Computing Machinery, 2004, p. 162. [Online].
Available: https://doi.org/10.1145/977091.977115

[57] P. Michaud, “Best-offset Hardware Prefetching,” in Proceedings of
the 22nd International Symposium on High Performance Computer
Architecture, ser. HPCA ’16, 2016, pp. 469–480.

[58] S. Mirbagher-Ajorpaz, E. Garza, G. Pokam, and D. A. Jiménez, “CHiRP:
Control-Flow History Reuse Prediction,” in Proceedings of the 2020
53rd International Symposium on Microarchitecture, ser. MICRO ’16,
2020, pp. 131–145.

[59] S. Mirbagher-Ajorpaz, G. Pokam, E. Mohammadian-Koruyeh, E. Garza,
N. Abu-Ghazaleh, and D. A. Jiménez, “Perspectron: Detecting invari-
ant footprints of microarchitectural attacks with perceptron,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 1124–1137.

[60] A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibáñez, V. Viñals-
Yúfera, and A. Ros, “Berti: an accurate local-delta data prefetcher,” in
Proceedings of the 55th International Symposium on Microarchitecture,
ser. MICRO ’22, 2022, pp. 975–991.

[61] S. Pakalapati and B. Panda, “Bouquet of Instruction Pointers: Instruction
Pointer Classifier-based Spatial Hardware Prefetching,” in Proceedings
of the 2020 47th International Symposium on Computer Architecture,
ser. ISCA ’20, 2020, pp. 118–131.

[62] B. Panda, “Spac: A synergistic prefetcher aggressiveness controller for
multi-core systems,” IEEE Transactions on Computers, vol. 65, no. 12,
pp. 3740–3753, 2016.

[63] B. Panda, “Clip: Load criticality based data prefetching for bandwidth-
constrained many-core systems,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’23. New York, NY, USA: Association for Computing Machinery,
2023, p. 714–727. [Online]. Available: https://doi.org/10.1145/3613424.
3614245

[64] B. Panda and S. Balachandran, “Introducing thread criticality awareness
in prefetcher aggressiveness control,” in 2014 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2014, pp. 1–6.

[65] B. Panda and S. Balachandran, “Caffeine: A utility-driven prefetcher
aggressiveness engine for multicores,” ACM Trans. Archit. Code
Optim., vol. 12, no. 3, aug 2015. [Online]. Available: https:
//doi.org/10.1145/2806891

[66] B. Panda and S. Balachandran, “Expert prefetch prediction: An expert
predicting the usefulness of hardware prefetchers,” IEEE Computer
Architecture Letters, vol. 15, no. 1, pp. 13–16, 2016.

[67] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantita-
tive Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1990.

[68] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using SimPoint for Accurate and Efficient Simulation,”
SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp. 318–319, Jun.
2003. [Online]. Available: http://doi.acm.org/10.1145/885651.781076

[69] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott,
A. Jaleel, S.-L. Lu, K. Chow, and R. Balasubramonian, “Sandbox
Prefetching: Safe Run-time Evaluation of Aggressive Prefetchers,” in
Proceedings of the 20th International Symposium on High Performance
Computer Architecture, ser. HPCA ’14, 2014, pp. 626–637.

[70] G. Reinman, T. Austin, and B. Calder, “A scalable front-end
architecture for fast instruction delivery,” in Proceedings of the 26th
Annual International Symposium on Computer Architecture, ser. ISCA
’99. USA: IEEE Computer Society, 1999, p. 234–245. [Online].
Available: https://doi.org/10.1145/300979.300999

[71] A. Ros, “Bl∪e: A timely, ip-based data prefetcher,” in The 1st ML-
Based Data Prefetching Competition. ML for Computer Architecture
and Systems, Worldwide event, Jun. 2021.

[72] F. Rosenblatt, The Perceptron, a Perceiving and Recognizing Automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

[73] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-
address filter: A unified mechanism to address both cache pollution
and thrashing,” in 2012 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2012, pp. 355–366.

[74] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Mitigating prefetcher-caused pollution
using informed caching policies for prefetched blocks,” ACM Trans.
Archit. Code Optim., vol. 11, no. 4, jan 2015. [Online]. Available:
https://doi.org/10.1145/2677956

[75] A. Seznec, “The FNL+MMA Instruction Cache Prefetcher,” https://hal.
inria.fr/hal-02884880/document.

[76] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in Proceedings of the 48th International Symposium on Microar-
chitecture, ser. MICRO ’15, Dec 2015, pp. 141–152.

[77] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’21.

http://doi.acm.org/10.1145/1186736.1186737
https://doi.org/10.1145/2540708.2540730
https://doi.org/10.1145/3123939.3123942
https://doi.org/10.1145/3123939.3123942
https://www.mdpi.com/2076-3417/11/3/1225
https://www.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://doi.org/10.1145/3503222.3507745
https://doi.org/10.1145/1375527.1375576
http://dresdenboy.blogspot.com/2016/02/new-amd-zen-core-details-emerged.html
http://dresdenboy.blogspot.com/2016/02/new-amd-zen-core-details-emerged.html
https://doi.org/10.1145/977091.977115
https://doi.org/10.1145/3613424.3614245
https://doi.org/10.1145/3613424.3614245
https://doi.org/10.1145/2806891
https://doi.org/10.1145/2806891
http://doi.acm.org/10.1145/885651.781076
https://doi.org/10.1145/300979.300999
https://doi.org/10.1145/2677956
https://hal.inria.fr/hal-02884880/document
https://hal.inria.fr/hal-02884880/document

New York, NY, USA: Association for Computing Machinery, 2021, p.
861–873. [Online]. Available: https://doi.org/10.1145/3445814.3446752

[78] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 135–146. [Online]. Available:
https://doi.org/10.1145/2442516.2442530

[79] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner,
“POWER5 System Microarchitecture,” IBM Journal of Research and
Development, vol. 49, pp. 505 – 521, 08 2005.

[80] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights Landing: Second-
Generation Intel Xeon Phi Product,” IEEE Micro, vol. 36, no. 2, pp.
34–46, 2016.

[81] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial Memory Streaming,” in Proceedings of the 33rd International
Symposium on Computer Architecture, ser. ISCA ’06, 2006, pp. 252–
263.

[82] A. Sridharan, B. Panda, and A. Seznec, “Band-pass prefetching:
An effective prefetch management mechanism using prefetch-fraction
metric in multi-core systems,” ACM Trans. Archit. Code Optim., vol. 14,
no. 2, jun 2017. [Online]. Available: https://doi.org/10.1145/3090635

[83] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed
Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers,” in Proceedings of the 13th International Sym-
posium on High Performance Computer Architecture, ser. HPCA ’07,
2007, pp. 63–74.

[84] D. Suggs, M. Subramony, and D. Bouvier, “The AMD “Zen 2” Proces-
sor,” IEEE Micro, vol. 40, no. 2, pp. 45–52, 2020.

[85] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in
Perceptron Branch Prediction,” ACM Trans. Archit. Code Optim.,
vol. 2, no. 3, p. 280–300, sep 2005. [Online]. Available: https:
//doi.org/10.1145/1089008.1089011

[86] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[87] G. Vavouliotis, L. Alvarez, B. Grot, D. Jiménez, and M. Casas,
“Morrigan: A Composite Instruction TLB Prefetcher,” in Proceedings
of the 54th International Symposium on Microarchitecture, ser.
MICRO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1138–1153. [Online]. Available: https://doi.org/10.
1145/3466752.3480049

[88] G. Vavouliotis, L. Alvarez, V. Karakostas, K. Nikas, N. Koziris, D. A.
Jiménez, and M. Casas, “Exploiting Page Table Locality for Agile TLB
Prefetching,” in Proceedings of the 48th International Symposium on
Computer Architecture, ser. ISCA ’21, 2021, pp. 85–98.

[89] G. Vavouliotis, G. Chacon, L. Alvarez, P. V. Gratz, D. A. Jiménez, and
M. Casas, “Page Size Aware Cache Prefetching,” in Proceedings of the
55th International Symposium on Microarchitecture, ser. MICRO ’22,
2022, pp. 956–974.

[90] J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman,
A. Morrison, C. W. Fletcher, and D. Kohlbrenner, “Augury: Using Data
Memory-Dependent Prefetchers to Leak Data at Rest,” in Proceedings
of the 2022 Symposium on Security and Privacy, ser. SP ’22. IEEE
Computer Society, 2022.

[91] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, and J. Emer, “Pacman:
Prefetch-aware cache management for high performance caching,” in
2011 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2011, pp. 442–453.

[92] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin,
“Temporal Prefetching Without the Off-Chip Metadata,” in Proceedings
of the 52nd International Symposium on Microarchitecture, ser.
MICRO ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 996–1008. [Online]. Available: https://doi.org/10.
1145/3352460.3358300

[93] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient Metadata
Management for Irregular Data Prefetching,” in Proceedings of the
46th International Symposium on Computer Architecture, ser. ISCA ’19,
2019, pp. 1–13.

[94] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall:
Implications of the Obvious,” SIGARCH Computer Architecture
News, vol. 23, no. 1, p. 20–24, mar 1995. [Online]. Available:
https://doi.org/10.1145/216585.216588

[95] X. Zhuang and H.-H. Lee, “A hardware-based cache pollution filtering
mechanism for aggressive prefetches,” in 2003 International Conference
on Parallel Processing, 2003. Proceedings., 2003, pp. 286–293.

[96] X. Zhuang and H.-h. S. Lee, “Reducing cache pollution via dynamic data
prefetch filtering,” IEEE Transactions on Computers, vol. 56, no. 1, pp.
18–31, 2007.

https://doi.org/10.1145/3445814.3446752
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/3090635
https://doi.org/10.1145/1089008.1089011
https://doi.org/10.1145/1089008.1089011
https://doi.org/10.1145/3466752.3480049
https://doi.org/10.1145/3466752.3480049
https://doi.org/10.1145/3352460.3358300
https://doi.org/10.1145/3352460.3358300
https://doi.org/10.1145/216585.216588

	Introduction
	Motivation
	Cache Prefetching and Page Boundaries
	First-Level Caches and Page-Cross Prefetching
	Lower-Level Caches and Page-Cross Prefetching

	Trends on Page-Cross Prefetching
	Academic Viewpoint
	Industrial Viewpoint

	Analyzing Page-Cross Prefetching
	Putting Everything Together

	Page-Cross Prefetch Filtering
	Design Overview
	Hardware Components of the Page-Cross Filter
	Operation
	Prediction
	Training
	Adaptive Thresholding Scheme

	Bouquet of Features
	Program Features
	System Features
	Combining Features

	DRIPPER: A Page-Cross Filter Prototype
	Storage Overhead

	Experimental Methodology
	Workloads
	Single-core Experiments
	Multi-core Experiments

	Evaluation
	DRIPPER for Different L1D Prefetchers
	Case Study: Berti Prefetcher
	Single-Core Performance
	Coverage and Accuracy
	Impact on TLBs and Caches
	Usefulness of Page-Cross Prefetching
	Comparison with Individual Features
	Evaluation with Large Pages
	Impact of L2C Prefetching
	Unseen Workloads
	Non-Intensive Workloads
	Multi-Core Evaluation

	Related Work
	Conclusions
	References

