
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

A Two Level Neural Approach Combining Off-Chip
Prediction with Adaptive Prefetch Filtering

Alexandre Valentin Jamet
alexandre.jamet@bsc.es

Barcelona Supercomputing Center (BSC)
Universitat Politècnica de Catalunya (UPC)

Georgios Vavouliotis
georgios.vavouliotis2@huawei.com

Huawei Zurich Research Center

Daniel A. Jiménez
djimenez@acm.org

Texas A&M University

Lluc Alvarez
lluc.alvarez@bsc.es

Barcelona Supercomputing Center (BSC)
Universitat Politècnica de Catalunya (UPC)

Marc Casas
marc.casas@bsc.es

Barcelona Supercomputing Center (BSC)
Universitat Politècnica de Catalunya (UPC)

Abstract—To alleviate the performance and energy overheads of
contemporary applications with large data footprints, we propose
the Two Level Perceptron (TLP) predictor, a neural mechanism that
effectively combines predicting whether an access will be off-chip
with adaptive prefetch filtering at the first-level data cache (L1D).
TLP is composed of two connected microarchitectural perceptron
predictors, named First Level Predictor (FLP) and Second Level
Predictor (SLP). FLP performs accurate off-chip prediction by
using several program features based on virtual addresses and
a novel selective delay component. The novelty of SLP relies on
leveraging off-chip prediction to drive L1D prefetch filtering by
using physical addresses and the FLP prediction as features. TLP
constitutes the first hardware proposal targeting both off-chip
prediction and prefetch filtering using a multi-level perceptron
hardware approach. TLP only requires 7KB of storage.

To demonstrate the benefits of TLP we compare its performance
with state-of-the-art approaches using off-chip prediction and
prefetch filtering on a wide range of single-core and multi-core
workloads. Our experiments show that TLP reduces the average
DRAM transactions by 30.7% and 17.7%, as compared to a
baseline using state-of-the-art cache prefetchers but no off-chip
prediction mechanism, across the single-core and multi-core
workloads, respectively, while recent work significantly increases
DRAM transactions. As a result, TLP achieves geometric mean
performance speedups of 6.2% and 11.8% across single-core and
multi-core workloads, respectively. In addition, our evaluation
demonstrates that TLP is effective independently of the L1D
prefetching logic.

I. INTRODUCTION

Emerging workloads from various domains [10], [17], [18],
[19], [24] have large data footprints that are orders of magnitude
larger than the capacity of current cache hierarchies [15]. These
workloads frequently trigger DRAM accesses, spending a large
portion of their execution time waiting for data transfers to
and from DRAM to complete with a detrimental effect on
performance and energy [6], [8], [9], [12], [51], [57].

Prior work has proposed several techniques to mitigate the
performance and energy overheads of these applications. These
techniques can be broadly classified into four categories: (i) off-
chip prediction schemes that predict whether a memory access
will result in a DRAM access or hit in the cache hierarchy

[13], [26], [34], [42], [54], (ii) aggressive data prefetching with
adaptive filters to ensure that only correct prefetches will be
issued [14], (iii) cache bypassing that avoids caching blocks that
will not be referenced in the near future [25], [30], [32], [45],
[48], [52], and (iv) disruptive cache designs and optimizations
for specific workload types [5], [20], [23], [36], [38], [41],
[47], [56]. This work focuses on the first two categories and
aims at combining their benefits in a cost-effective manner.

Despite their potential for determining the location of
requested data in the memory hierarchy, previously proposed
off-chip predictors [13], [26] have important drawbacks that
undermine their potential for boosting the performance of the
memory subsystem while hindering their implementation in
real-world designs. For example, the state-of-the-art off-chip
predictor [13] triggers two memory accesses, one to DRAM
and a second regular request to the cache hierarchy, when it
predicts that the corresponding load access will be served from
DRAM. While this approach can potentially reduce the latency
of a load request that ends up being served from DRAM, it may
also significantly increase the number of DRAM transactions.
This work shows that, although effective, the state-of-the-art
off-chip predictor significantly increases the number of DRAM
transactions, which is a critical aspect in bandwidth-constrained
scenarios. In addition, our analysis indicates that a large fraction
of the inaccurate off-chip predictions is actually served by the
first-level data cache (L1D). Therefore, a microarchitectural
scheme that selectively delays the off-chip predictions with
modest confidence until the L1D lookup is resolved has
potential to significantly reduce the number of useless DRAM
transactions and deliver higher performance.

Previous approaches have successfully applied prefetch
filtering at the lower level caches [14], [43], [44], [58]. However,
these approaches are not agile since they are typically optimized
on top of specific prefetch engines, incur significant area
overheads, and are not exposed to program features that are
very valuable to produce accurate predictions (e.g., a complete
sequence of accessed virtual addresses). This work argues that
the concept of off-chip prediction can be leveraged to form

mailto:alexandre.jamet@bsc.es
mailto:georgios.vavouliotis2@huawei.com
mailto:djimenez@acm.org
mailto:lluc.alvarez@bsc.es
mailto:marc.casas@bsc.es

effective prefetch filters for L1D. Specifically, our analysis
demonstrates that the vast majority of the L1D prefetch requests
served from DRAM are inaccurate.

To address our findings and improve the performance
or memory-intensive workloads, we propose the Two Level
Perceptron (TLP) predictor. TLP constitutes the first hardware
proposal targeting both off-chip prediction and prefetch filtering
using a multi-level perceptron hardware approach. TLP is
composed of two connected microarchitectural perceptron
predictors: the First Level Predictor (FLP) and the Second
Level Predictor (SLP). FLP is a perceptron hardware predictor
located near the core that employs a novel mechanism to reduce
the number of DRAM accesses by selectively delaying off-chip
predictions when needed. SLP is a perceptron predictor located
alongside the L1D. The novelty of SLP relies on leveraging off-
chip prediction to drive L1D prefetch filtering using physical
addresses as well as the FLP prediction as features. Our
evaluation illustrates that TLP yields significantly higher
performance than the state-of-the-art off-chip predictor [13] and
prefetch filtering scheme [14] across a large set of single-core
and multi-core workloads.

This paper makes the following contributions:
• We design and propose Two Level Perceptron (TLP)

predictor, a scheme composed of two connected perceptron
predictors: FLP and SLP. FLP reduces the pressure on the
memory subsystem using a novel selective delay mechanism.
SLP leverages off-chip prediction to guide prefetch filtering
in the L1 data cache. TLP is the first hardware proposal
targeting both off-chip prediction and prefetch filtering. TLP
only requires 7KB of storage.

• We compare TLP with the state-of-the-art off-chip
predictor, Hermes [13], the state-of-the-art prefetch filter, PPF
[14], and a combination of both. Our evaluation considers 55
single-core and 200 multi-core workloads. When considering a
system that uses IPCP [39] as L1D prefetcher, TLP reduces the
average number of DRAM transactions by 30.7% and 17.7%,
as compared to a baseline that uses IPCP as L1D prefetcher
but no off-chip prediction mechanism, across the single-core
and multi-core workloads, respectively, while state-of-the-art
approaches significantly increase DRAM transactions. As a
result, TLP achieves geometric mean performance speedups of
6.2% and 11.8% across single-core and multi-core workloads,
respectively. When considering a scenario with the Berti [37]
L1D prefetcher, TLP also outperforms Hermes, PPF, and a
combination of them in both single-core and multi-core contexts
since it significantly reduces DRAM accesses.

II. BACKGROUND

A. Off-Chip Prediction

Emerging workloads spanning various domains [10], [17],
[18], [19], [24], have a key property in common: massive
working set sizes that do not fit in the existing cache hierar-
chies [15], making cache management a major performance
bottleneck for processor design. Indeed, recent work [6], [8],
[9], [12], [51], [57] shows that these workloads spend up to
80% of their total execution time waiting for DRAM.

To address the high-latency load requests of these emerging
applications, prior work [13], [26], [34], [42], [54] has
introduced the concept of off-chip prediction. The core idea
behind off-chip prediction is to predict whether a memory
access will eventually result in a DRAM access or in a hit
in the cache hierarchy (L1D, L2C, LLC). Prior work in the
domain can be classified in two categories depending on their
prediction strategy: i) predict which cache level (L1D, L2C,
LLC) will provide a hit, if any [26], [42], and ii) predict
whether the cache hierarchy as a whole will provide a hit
or not [13]. A representative work from the first category is
Level Prediction (LP) [26], a scheme that dynamically predicts
where in the memory hierarchy a demanded memory block is
most likely to be found. A representative scheme of the second
category is Hermes [13], an adaptive perceptron-based off-chip
predictor that routes demand load requests directly to DRAM
when it is confident that the load will miss in all cache levels.

Hermes [13] is the state-of-the-art microarchitectural off-
chip prediction scheme. At the core of Hermes, there is a
perceptron predictor composed of several prediction tables,
one per selected program feature, similar to prior work on
perceptron-based microarchitectural prediction: from branch
prediction [21], [28], [29] to cache replacement policies [30],
[48] and other intelligent modules [14].

Hermes is consulted to provide a prediction upon demand
load requests. If the prediction is positive (i.e., the demand load
request is predicted to go off-chip), the core issues two requests:
one regular request to the cache hierarchy, that might go down
to DRAM, and another speculative request that fetches the
cache line from DRAM in an attempt to hide the latency cost
of accessing the caches. When a demand request eventually
returns to the core to be consumed, the training logic of Hermes
compares the original prediction with the actual outcome and
accordingly updates the weights in the prediction tables.

B. Prefetch Filtering

Hardware prefetching is a technique that proactively fetches
blocks in the cache hierarchy before they are explicitly
requested by a core. Hardware prefetchers need to deal with
two metrics that are at odds with one another: miss coverage
and prefetching accuracy. Aggressive prefetchers typically have
high coverage but low accuracy while conservative prefetchers
tend to have low coverage and high accuracy.

To handle the coverage-accuracy trade-off, smart prefetch
filters and throttling schemes able to accurately identify useless
prefetch requests and discard them have been proposed [14],
[43], [44], [58]. An effective prefetch filter would increase
the accuracy of a hardware prefetcher without harming its
coverage, resulting in higher performance by enabling better
cache management.

The state-of-the-art prefetch filter is the Perceptron-based
Prefetch Filter (PPF) [14], a perceptron predictor that uses
several program features to filter out inaccurate prefetch
requests, increasing the accuracy of the underlying prefetcher.
Although effective, PPF has two limitations. First, PPF is built
and optimized on top of a specific prior prefetcher [33], thus

SPEC GAP ALL
0

25

50

M
P

K
I

L1D

L2C

LLC

Fig. 1: MPKI of all caches (L1D, L2C, LLC) across the SPEC
(SPEC CPU 2006 and SPEC CPU 2017) and GAP workloads.

it requires significant engineering effort as well as feature
exploration and tuning to make it filter effectively the requests
of other prefetchers. Second, PPF incurs 40KB of storage
overhead, which hinders its adoption by commercial designs.

III. MOTIVATION

This section motivates the need for better off-chip predictors
and highlights the potential of leveraging the concept of off-
chip prediction to apply effective prefetch filtering for the
L1D cache. Section III-A characterizes the cache behavior of
contemporary applications, showing that a large fraction of the
memory accesses that miss in the L1D result in a DRAM access.
Section III-B analyzes the behavior of Hermes [13], the state-
of-the-art off-chip predictor presented in Section II-A, in both
single-core and multi-core contexts. Our analysis indicates that
Hermes significantly increases DRAM bandwidth consumption,
especially in multi-core contexts. Therefore, performance
improvements are possible by reducing the number of additional
DRAM transactions triggered by Hermes. Section III-C focuses
on L1D cache prefetching and characterizes the inaccurate
prefetches issued by two state-of-the-art L1D prefetchers, and
reveals that off-chip prediction can drive the design of effective
prefetch filters for L1D. Section V presents in detail our
simulation infrastructure and all the considered workloads.

A. Cache Behavior of Modern Workloads

Prior work discussed in Section II-A shows that the majority
of demand load requests of applications featuring huge data
working sets miss in all levels of the cache hierarchy, triggering
many DRAM accesses. This section analyzes the cache
behavior of all single-core workloads presented in Section V.

Figure 1 shows the average Misses per Kilo Instruction
(MPKI) rates of L1D, L2C and LLC. On average the MPKIs
of L1D, L2C, and LLC are 45.0, 34.1, and 15.6, respectively.
Therefore, 34.7% of L1D misses eventually require a DRAM
access. Remarkably, workloads from domains such as graph
processing put more pressure on the cache hierarchy, resulting
in more frequent DRAM accesses. Indeed, Figure 1 reveals
that, on average, the graph-processing (GAP) workloads trigger
a DRAM access for 39.7% of the L1D misses.

Finding 1. A large fraction of the demand load requests
triggered by applications with large working set sizes miss
in all cache levels.

-30

0

30

-15

15

In
cr

ea
se

D
R

A
M

T
ra

n
sa

ct
io

n
s

(%
)

SPEC GAP

0

10

20

AVG

Fig. 2: Increase in DRAM transactions due to Hermes off-chip
predictions relative to a baseline without off-chip prediction
mechanism. Lower is better.

0

100

50

In
cr

ea
se

D
R

A
M

T
ra

n
sa

ct
io

n
s

(%
)

SPEC GAP

0

5

10

AVG

Fig. 3: Increase in DRAM transactions due to Hermes off-chip
predictions relative to a baseline without off-chip prediction
mechanism in the 4-core context. The x-axis ticks represent 200
different 4-core workload mixes of SPEC and GAP workloads.
Lower is better.

B. Impact of Hermes

This section quantifies the impact of Hermes on the number
of DRAM transactions processed by the main memory in both
single-core and multi-core contexts and identifies features that
can potentially increase Hermes’ efficiency and performance.
This analysis is conducted using the methodology and the set
of workloads presented in Section V.

1) DRAM Transactions: Figures 2 and 3 illustrate the impact
of Hermes on the number of DRAM transactions in single-
core and multi-core contexts, respectively. The x-axis display
different SPEC and GAP workloads. Both SPEC and and
GAP workloads are separately sorted considering the LLC
MPKI. The y-axis displays the increase in terms of DRAM
transactions that Hermes incurs over a baseline without any
off-chip predictor.

Figures 2 and 3 indicate that Hermes places high pressure
on DRAM, especially in the multi-core scenario, since it issues
many speculative DRAM requests. Regarding the single-core
evaluation, Hermes increases the number of DRAM transactions
by 5.2%, 6.6%, and 6.4% over the baseline system that does
not use any off-chip predictor for the SPEC, GAP, and all
workloads combined, respectively. Figure 3, which presents
the impact of Hermes on DRAM transactions in a multi-core
context, shows that Hermes significantly increases DRAM
transactions. Specifically, Hermes increases the average number
of DRAM transactions by 2.2%, 9.6%, and 6.0% over the multi-
core baseline for the SPEC mixes, GAP mixes, and all mixes,
respectively. Notably, the increase in DRAM transactions for the
GAP workloads is significantly higher than the increase for the
SPEC workloads; this happens because the GAP suite is made
of graph-processing applications that have much larger data
working sets than the general-purpose SPEC CPU workloads.

SPEC GAP

0

50

100
O

ff
-c

h
ip

P
re

d
ic

ti
o
n

O
u

tc
o
m

e
(%

)
L1D L2C LLC DRAM

0

50

100
AVG

Fig. 4: Location of a block upon a Hermes off-chip prediction.

Finding 2. Hermes significantly increases the number of
DRAM accesses in both single-core and multi-core contexts,
especially for graph-processing applications.

2) Analysis of Hermes Predictions: This section charac-
terizes the off-chip predictions of Hermes (i.e., cases where
Hermes triggered a speculative DRAM request), and motivates
potential design and functionality enhancements. To do so,
we categorize the off-chip predictions of Hermes depending
on where the corresponding block is located in the memory
hierarchy (L1D, L2C, LLC, DRAM). Specifically, we consider
the following categories: (i) block resides in L1D, (ii) block
resides in L2C, (iii) block resides in LLC, and (iv) block
resides in DRAM. Predictions belonging to categories (i), (ii),
and (iii) correspond to inaccurate off-chip predictions since
the block is located in the cache hierarchy while category (iv)
represents accurate off-chip predictions since the block is not
present in the caches. Figure 4 presents this breakdown for both
SPEC and GAP single-core workloads, using the methodology
that Section V describes. Both SPEC and GAP workloads are
separately sorted based on LLC MPKI, similar to Figure 2.

Figure 4 shows that 42.2% of the total off-chip predictions
are inaccurate since the corresponding blocks reside in the
cache hierarchy (L1D , L2C, or LLC). Notably, a large
fraction of the load requests corresponding to an inaccurate
off-chip prediction are served by the L1D cache. Specifically,
17.7% of the total off-chip predictions are useless since their
corresponding block resides in the L1D. In other words,
delaying Hermes to issue an off-chip prediction after the L1D
lookup completion would significantly reduce DRAM trans-
actions. However, constantly delaying the off-chip predictions
of Hermes until the L1D lookup is completed would result in
suboptimal performance gains since more than 50% (57.8%
on average in Figure 4) of the Hermes off-chip predictions
are accurate. In these cases, issuing the DRAM access before
the L1D access is resolved provides latency benefits. Thus, a
mechanism to decide whether or not an off-chip prediction
of Hermes should be issued before or after the L1D access
completion has the potential to significantly reduce the number
of useless DRAM accesses triggered by Hermes.

Finding 3. Selectively delaying Hermes off-chip predictions
until the L1D lookup is resolved has the potential to signif-
icantly reduce the number of useless DRAM transactions
and deliver higher performance.

0

100

200

P
re

fe
tc

h
es

P
er

K
il

o
In

st
ru

ct
io

n
s

(P
P

K
I)

393.07

SPEC GAP

L2C LLC DRAM

0

75

25

50 AVG

(a) IPCP

0

20

P
re

fe
tc

h
es

P
er

K
il

o
In

st
ru

ct
io

n
s

(P
P

K
I)

SPEC GAP

L2C LLC DRAM

0

10 AVG

(b) Berti

Fig. 5: Location where the inaccurate L1D prefetch requests
are served across two state-of-the-art L1D prefetchers. Both
SPEC and GAP workloads are separately sorted based on LLC
MPKI, similar to Figure 2.

0

5

10
P

re
fe

tc
h

es
P

er
K

il
o

In
st

ru
ct

io
n

s
(P

P
K

I) L2C LLC DRAM

0

5

2.5

AVG

(a) IPCP

0

10

P
re

fe
tc

h
es

P
er

K
il

o
In

st
ru

ct
io

n
s

(P
P

K
I) L2C LLC DRAM

0.0

2.5 AVG

(b) Berti

Fig. 6: Location where the accurate L1D prefetch requests are
served across two state-of-the-art L1D prefetchers. Both SPEC
and GAP workloads are separately sorted based on LLC MPKI,
similar to Figure 2.

C. Off-Chip Prediction for L1D Prefetch Filtering

This section characterizes the inaccurate prefetches issued
by L1D prefetchers across the considered single-core SPEC
and GAP workloads. To do so, we consider two state-of-the-
art L1D prefetchers: (i) the Instruction Pointer Classification
Prefetcher (IPCP) [39], and (ii) the Berti prefetcher [37].

Figure 5a presents the breakdown of the inaccurate L1D
prefetches issued by IPCP depending on where in the memory
hierarchy (L2C, LLC, DRAM) the corresponding prefetch
request is served. To do so, we use the Prefetches Per Kilo
Instruction (PPKI) metric. Overall, 18.2%, 3.8%, and 78% of
the total inaccurate prefetch requests are served by L2C, LLC,
and DRAM, respectively. We observe that the majority of the

inaccurate prefetch requests are the ones that were served from
DRAM. This behavior is more prevalent for the GAP workloads
since these workloads have more complex patterns than SPEC.
In addition, we compare the accurate L1D prefetches of IPCP
that were served from DRAM with the inaccurate ones. Our
analysis indicates that, on average, 95.2% of the prefetches
that were served from DRAM are inaccurate (the rest 4.8%
is accurate prefetches) for our set of workloads; the ratio is
higher for the GAP benchmarks (96.7%) than for the SPEC
(82%) since the former exhibit more complex memory access
patterns. Figure 5b presents the breakdown of Berti’s inaccurate
prefetches depending on where in the memory hierarchy the
corresponding request is served, similar to Figure 5a. Overall,
we observe the same behavior. The vast majority of Berti´s
useless prefetch requests are served from DRAM and there is
high probability for a prefetch that goes all the way to DRAM
to fetch a block to be inaccurate, making a strong case for
exploiting the off-chip prediction technique to design an L1D
prefetch filter. Figure 6 indicates how the overall number of
accurate prefetchers served from DRAM (1.7 and 0.5 PPKI for
IPCP and Berti) is much smaller than the inaccurate prefetchers
served from DRAM (35.6 and 6.6 for IPCP and Berti).

Thus, we conclude that accurately predicting whether a
prefetch will be served from DRAM can provide a useful
hint regarding the usefulness of the corresponding prefetch.
Consequently, an accurate off-chip predictor can be leveraged
as an L1D prefetch filter. Finally, we observe similar behavior
in the multi-core context.

Finding 4. Off-chip prediction can be leveraged to design an
effective prefetch filtering scheme for L1D.

These four findings demonstrate that the state-of-the-art
approach for off-chip prediction incurs a significant overhead
in terms of additional DRAM transactions, and that there are
opportunities to eliminate this overhead and boost performance
by unifying off-chip prediction and prefetch filtering. Section IV
presents a novel approach that unifies these two techniques in
a single method.

IV. TWO LEVEL PERCEPTRON PREDICTION

This paper proposes the Two Level Perceptron (TLP) predic-
tor, a two level cooperative prediction scheme that leverages
neural methods to perform cost-effective off-chip prediction for
demand load requests combined with adaptive L1D prefetch
filtering. TLP is composed of two microarchitectural perceptron
predictors named First Level Perceptron (FLP) predictor and
Second Level Perceptron (SLP), respectively. TLP is motivated
by the four findings of Section II.

Findings 1 and 2 demonstrate that Hermes exacerbates the
pressure on the memory subsystem that modern workloads
inject, particularly for memory intensive workloads from
domains like graph-processing. In addition, Finding 3 indicates
that a selective delay mechanism can potentially mitigate
this pressure. The FLP design, described in Section IV-A,
is motivated by these three findings. FLP includes a novel
selective delay mechanism to only trigger speculative requests

Legacy Hermes features

• PC ⊕ cacheline offset
• PC ⊕ byte offset
• PC + first access
• Cacheline offset + first access
• Last-4 load PCs

Leveling feature • FLP prediction + cacheline offset

TABLE I: List of features used by the FLP and the SLP.

Feature1

Hash

Weight
Table1

Featurei

Hash

Weight
Tablei

Featuren

Hash

Weight
Tablen

... ...

Sumw1 wn

wi

>Thigh
issue DRAM

request
Y>Tlow

Y

N

L1d
miss

Y

Fig. 7: Flowchart of FLP. Diamonds indicate decision points.

to DRAM for highly confident off-chip predictions. Finding
4 indicates the potential of guiding prefetch filtering via off-
chip prediction. The SLP design, described in Section IV-B,
exploits this potential and incorporates a novel feature based
on FLP output. Section IV-C presents our complete proposal,
TLP, a multi-Level perceptron combining FLP and SLP. TLP
is novel in three ways: i) it incorporates a new selective delay
mechanism to reduce pressure on the memory subsytem; ii) it
leverages off-chip prediction to guide prefetch filtering; and
iii) it constitutes the first hardware proposal targeting both
off-chip prediction and prefetch filtering. In addition, TLP is
the first multi-level perceptron hardware approach that can be
effectively applied due to its low area requirements. Finally,
Section IV-D details the hardware requirements of TLP.

A. First Level Perceptron (FLP) Predictor

FLP is an off-chip predictor based on a micro-architectural
hashed perceptron predictor that dynamically decides whether
to consume the off-chip prediction in the core (i.e., in
parallel with the L1D lookup since L1D caches are typically
implemented as VIPT structures), or upon an L1D miss. This
delayed decision mechanism is driven by two threshold values:
τhigh and τlow. Perceptron confidence values greater than τhigh
indicate a high probability for the corresponding load request
to miss in all cache levels, values lower than τlow indicate
the opposite, and intermediate values indicate the need for
delaying the decision upon an L1D miss. FLP takes into account
several program features to predict whether a demand load

request will miss in the cache hierarchy or not. Our exploration
indicates that the features used in the original Hermes [13]
work provide good predictions and that adding more features
provides marginal benefits. Thus, FLP uses the same set of
features as the original Hermes prediction, presented in Table I
(c.f.: Legacy Hermes features). The selected features correlate
the probability of a demand load request going off-chip with
a history of PCs and accessed memory regions. Each FLP
feature is associated with a weight table which is composed
of confidence counters.

Figure 7 presents a flowchart of FLP’s operation and
illustrates how the confidence value produced by FLP is used to
drive the off-chip prediction mechanism. Upon a demand load
request, FLP is consulted by the core. FLP uses the selected
program features to index its weight tables, then reads out
and sums the corresponding weights to produce a confidence
value. Then, the confidence value is compared to the τhigh
threshold. A confidence value greater than τhigh indicates a
high probability for the corresponding load request to miss in
all caches. In this case, FLP issues a speculative DRAM request
from the core in parallel with the L1D lookup as first-level
caches are typically implemented as VIPT structures. However,
if the confidence value does not exceed τhigh but does exceed
the τlow threshold, the probability of the load demand request
to miss in all cache levels is not considered high enough to
benefit from a speculative DRAM request. Thus, the request
is flagged as predicted off-chip and is sent to the L1D cache.
In Section III-A, we observed that the probability of a load
demand requiring an access to the DRAM tends to rise with
each successive cache level traversed. Therefore, if this request
results in an L1D miss, the flag bit is read, and a speculative
DRAM request is issued from the L1D. Thus, FLP addresses
our third analysis finding and avoids sending useless DRAM
requests for loads that might hit in the on-chip caches. Finally,
if the confidence value exceeds none of the two thresholds, the
demand load request continues like a normal request without
triggering speculative DRAM access.

The FLP is trained upon completing a memory access, (i.e.,
when the memory block is returned to the core from the cache
hierarchy). When the request comes back to the core, the FLP
checks if the request was a true off-chip load request (i.e., if
this request required a DRAM access). If the request was a true
off-chip load request, the predictor’s corresponding weights
are trained positively. Conversely, if the request was not a true
off-chip load request, the predictor’s corresponding weights
are trained negatively.

B. Second Level Perceptron (SLP) Predictor

The SLP is a perceptron-based off-chip predictor conceived
to be used in the context of L1D prefetch filtering. The SLP
design is motivated by the observation that off-chip prediction
can be leveraged to design effective L1D prefetch filters.
Section III-C justifies this observation. SLP can be used to
improve the performance of any generic L1D prefetcher since
it makes no assumption regarding the L1D prefetcher design.

Feature1

Hash

Weight
Table1

Featurei

Hash

Weight
Tablei

Featuren

Hash

Weight
Tablen

... ...

Sumw1 wn

wi

>Tpref issue prefetchYdiscard prefetch N

Fig. 8: Flowchart of SLP. Diamonds indicate decision points.

SLP uses several program features to perform effective
prefetch filtering at L1D. Our feature exploration indicates that
FLP’s features can be also used in the context of L1D prefetch
filtering. Therefore, SLP uses the same as FLP, presented in
Table I, but these features are adapted to use physical addresses
in place of virtual addresses as SLP is placed after the L1D
cache. Additionally, SLP makes use of a new feature denoted
as FLP prediction + offset in Table I. This feature combines
the FLP output bit of the cache block from which the prefetch
request originated with the offset of the prefetched cache block
in its physical memory page. The rationale of this feature is
to correlate the probability of an L1D prefetch request going
off-chip when a certain cache line offset is touched with the off-
chip prediction decision related to the block that triggered the
prefetch request. The SLP produces a binary off-chip prediction
when an L1D prefetch request is issued.

Figure 8 presents a flowchart of the SLP operation. SLP is
consulted when the L1D prefetcher issues a prefetch request.
The confidence value is built similarly to the FLP. The output
value is compared to the τpref threshold. If it exceeds τpref , the
prefetch is considered as eventually requiring a DRAM access
and, therefore, likely useless. In this situation, the prefetch
request is discarded. Conversely, if the confidence value does
not exceed τpref , the prefetch request is processed as usual by
the cache hierarchy.

SLP is trained in a similar way as FLP (cf. Section IV-A).
Upon the completion of an L1D prefetch request, the predictor’s
weights are trained positively or negatively depending on
whether or not the prefetch request was served off-chip.

C. Building a Multi-Level Perceptron Predictor

This section presents our complete proposal, Two Level
Perceptron (TLP) predictor, a hierarchical neural prediction
scheme that combines FLP and SLP predictors, presented in
Sections IV-A and IV-B, respectively.

Figure 9 shows the design and the operation of TLP. Upon
a load demand access, the core consults FLP to obtain a
confidence value Conf driving the off-chip prediction 1 . This
prediction can give one of the three following outcomes: (i) the
load request is predicted to be off-chip with high confidence
(Conf > τhigh), thus a speculative DRAM request is thrown

Core L1D L2C LLC DRAM

FLP

L1D
Pref

Conf > Thigh

Tlow <= Conf <= Thigh and L1D miss

Conf < Tlow Don't trigger DRAM Request

SLP
Discard prefetch

Conf >= Tpref

Conf < Tpref

1

2

3

4

5

6

7

Fig. 9: Organization and operation of the Two Level Perceptron (TLP) prediction mechanism.

from the core 2 besides the regular load demand access; (ii)
the load request is predicted to be off-chip with low confidence
(τlow ≤ Conf ≤ τhigh), thus the speculative DRAM request
will be thrown only if the load misses in the L1D 3 ; (iii) the
load request is predicted to be on-chip; therefore no additional
action is taken 4 besides triggering the regular demand access.
Metadata relative to the prediction (hashed PC, history of last
load PCs, and perceptron confidence value) are stored in the
matching Load Queue entry for later training and an off-chip
prediction tag is set in the load request thrown to the cache
hierarchy depending on the FLP prediction.

SLP is consulted upon L1D prefetch requests 5 . To make
a prediction, SLP takes as input the metadata attached to the
prefetch request and the off-chip prediction tag attached to the
demand load request from which the prefetch request originates.
This information is used to produce an off-chip Conf predic-
tion specific to L1D prefetch request. This prediction can result
in two possible outcomes: i) the prefetch request is predicted
to be off-chip (Conf < τpref) and the prefetch request is
discarded 6 , and ii) the prefetch request is predicted to be
on-chip (Conf ≥ τpref) and the prefetch request is processed
as usual by the cache hierarchy 7 . Similarly to FLP, SLP
stores metadata relative to its prediction in the L1D MSRH
entries for later training.

The training routines of the FLP and the SLP are triggered
upon completion of the corresponding requests, (i.e., for FLP
when the load request returns to the core and SLP when the
prefetch request is served), as Sections IV-A and IV-B explain.

D. TLP Hardware Requirements and Latency

Table II breaks down the hardware requirements of TLP into
its various components. TLP only requires 6.98KB of additional
storage per core. Similar to Hermes [13], FLP requires 3.21KB
of storage for its prediction tables and 0.42KB of storage for
the metadata in the Load Queue entries for training purposes.
SLP requires 3.29KB of storage for its prediction tables as we

Component Description Size

FLP
• Perceptron weight tables: 2.58KB
• Page buffer: 0.63KB 3.21KB

SLP
• Perceptron weight tables: 2.66KB
• Page buffer: 0.63KB 3.29KB

Load Queue metadata
Hashed PC: 32b; Last-4 PC: 10b; First
access: 1b; perceptron confidence value:
5b

0.42KB

L1D MSHR metadata
Hashed PC: 32b; Last-4 PC: 10b; First
access: 1b; perceptron confidence value:
5b; prediction: 1b

0.06KB

Total 6.98KB

TABLE II: Storage overhead of TLP.

make the addition of a new feature, and 0.06KB of additional
storage in the L1D MSHR entries for training purposes. In total,
TLP requires only 6.99KB of extra storage, making it a low
overhead design combining off-chip prediction and prefetch
filtering. Similarly to previous work [13], we consider a 6-
cycles latency when either FLP or SLP trigger a speculative
DRAM access.

V. EXPERIMENTAL METHODOLOGY

A. Simulation Methodology

We evaluate our proposal using ChampSim [22], a detailed
trace-based simulator that models a 4-wide out-of-order CPU.
We consider a baseline system similar to the Intel Cascade
Lake microarchitecture [1]. Table III presents the specific con-
figuration details of the baseline system. Regarding hardware
prefetching, we use state-of-the-art prefetchers in both the L1D
and the L2C. At the L1D level we consider both the Instruction
Pointer Classification Prefetcher (IPCP) prefetcher [39] and
the Berti prefetcher [37]. At the L2 level we use the SPP
prefetcher [33], which brings prefetched blocks into either the
L2C or the LLC depending on its internal prefetch logic.

B. Workloads

Our evaluation considers a large set of applications spanning
different benchmark suites. Specifically, we consider workloads

Component Description
Branch Predictor hashed-perceptron
CPU 3.8GHz, 4-wide out-of-order processor

6-stage pipeline, 224-entries re-order buffer
L1 ITLB 64-entry, 4-way, 1cc, 8-entry MSHR, LRU
L1 DTLB 64-entry, 4-way, 1cc, 8-entry MSHR, LRU
L2 TLB 1536-entry, 12-way, 8cc, 16-entry MSHR, LRU
L1I Cache 32 kB, 8-way, 4cc, 10-entry MSHR, LRU
L1D Cache 32 kB, 8-way, 4cc, 10-entry MSHR, LRU, IPCP [39] or Berti [37]
L2 Cache 1MB, 16-way, 10cc, 16-entry MSHR, LRU, SPP [33]
LLC 1.375MB per core, 11-way, 36/56cc, 64-entry MSHR, LRU

16GB, DDR4 SDRAM
DRAM single-core data-rate: 12.8GB/s per core

multi-core data-rate: 3.2GB/s per core
tRP = tRCD = tCAS = 24 cycles

TABLE III: System configuration.

from SPEC CPU 2006 [2] and SPEC CPU 2017 [3] benchmark
suites. In addition, we consider graph-processing applications
included in the GAP benchmark suite [11]. Specifically, we use
six graph-processing kernels from GAP: Breadth-First Search
(BFS) is a fundamental graph traversal algorithm; Page Rank
(PR) iteratively updates per-vertex ranks until convergence;
Connected Components (CC) applies the Shiloach-Vishkin [46]
algorithm to compute the largest connected components of
the graph; Betweenness Centrality (BC) uses the Brandes
algorithm [16] to approximate the per-vertex centrality scores;
Triangle Count (TC) counts the number of triangles in the
graph; and, finally, Single-source Shortest Paths (SSSP) uses δ-
stepping [35] to return the distance of all vertices of a graph to
a given source vertex. Table IV shows the main characteristics
of these six applications, including the size of property array
elements, and input parameters such as the execution style
(push or pull), or the use of frontiers.

For each graph-processing kernel, we consider 6 different
input graphs that feature different sizes and distributions of
node degrees (e.g., power-law, normal, etc.). Different degree
distributions produce different memory access patterns. For
instance, when node degrees are distributed following a power-
law function, there are a few highly connected graph nodes
that yield more data reuse opportunities than vertices with a
few connections. Table V lists all considered input graphs.

In addition, we only consider workloads for which the
baseline system shows LLC MPKI greater than 1. This filters
out workloads and leaves us with 31 GAP workloads and 24
SPEC workloads.

All workload traces have been obtained using the SimPoint
methodology [40] to identify at least one SimPoint representa-
tive of each workload. Each SimPoint is 1 billion instructions
long and characterizes a different phase of these workloads,
similar to prior work [30], [32], [45], [49].

Section VI refers to SPEC 2006 and SPEC 2017 workloads
as SPEC and to GAP workloads as GAP.

C. Single-Core Evaluation

Our set of single-core workloads contains 55 distinct work-
loads: 31 possible combinations of graph-processing kernels
and input graphs, described in Section V-B, and 24 SPEC CPU

BC [11] BFS [11] CC [11] PR [11] TC [11] SSSP [11]
irregData ElemSz 8B + 4B 4B 4B 4B 4B 4B

Execution style Push-Mostly Push & Pull Push-Mostly Pull-Only Push-Only Push-Only
Use Frontier Yes Yes No No No Yes

TABLE IV: Graph kernels

Web [11] Road [11] Twitter [11] Kron [11] Urand [11] Friendster [53]
Vertices (in M) 50.6 23.9 61.6 134.2 134.2 65.6
Edges (in M) 1,949.4 58.3 1,468.4 2,111.6 2,147.4 3,612.1

TABLE V: Input Graphs

2006 [2] and SPEC CPU 2017 [3] benchmarks. All considered
workloads experience at least 1 Miss per Kilo Instructions
(MPKI) in the baseline system that Table III describes. Each
workload is executed for 100 million instructions to warm
up the memory hierarchy and the other microarchitectural
structures, and it is executed for an additional set of 100
million instructions to obtain performance data. We run
experiments evaluating the impact of using larger numbers
of instructions (500 million warmup instructions, 1 billion
simulation instructions), and observe identical trends with
negligible differences in terms of IPC.

D. Multi-Core Evaluation

We generate multi-core workload mixes using the same
methodology as previous work [13]. We consider either single-
core GAP workloads or single-core SPEC workloads to create
both homogeneous and heterogeneous multi-core workload
mixes. To generate the homogeneous ones, we randomly
select 50 single-core workloads and run four instances of
each workload, one per core. For the heterogeneous mixes, we
randomly select 50 combinations of four single-core workloads.
In total, we consider 50 homogeneous and 50 heterogeneous
four-core workloads. We do this process for both SPEC
and GAP benchmark suites, meaning that our multi-core
evaluation campaign is composed of 200 workloads. Finally,
our multi-core experiments use the same number of warmup
and simulation instructions as the single-core scenario.

Our performance results concerning multi-core workloads
report the weighted speedup normalized to the baseline. This
metric is commonly used to evaluate multi-core workloads [30],
[45], [50] since it avoids performance overestimation due to
high-IPC threads. The metric is computed as follows: for each
single-core workload, we compute its IPC in a multi-core
scenario shared with the other co-running single-core workloads
(IPCshared), and its IPC running in isolation on the same
system (IPCsingle). We then compute the weighted IPC of
the mix as the weighted sum of IPCshared/IPCsingle for all
the benchmarks in the mix, and we normalize this weighted
IPC with the weighted IPC of the baseline design.

E. Alternative Techniques

Besides TLP, we consider the following techniques in
our evaluation: (i) the Perceptron-based Prefetch Filtering
(PPF) [14], a perceptron-based predictor that filters inaccurate
prefetch requests, thus increasing the accuracy of the underlying

0

30

-15

15

S
p

ee
d
u
p

(%
)

SPEC GAP

PPF

Hermes

Hermes + PPF

TLP

0

10

20

P
P

F

H
e
r
m

e
s

H
e
r
m

e
s

+
P

P
F

T
L

P

(a) IPCP

0

40

-20

20

S
p

ee
d
u
p

(%
)

SPEC GAP

PPF

Hermes

Hermes + PPF

TLP

0

10

20

P
P

F

H
e
r
m

e
s

H
e
r
m

e
s

+
P

P
F

T
L

P

(b) Berti

Fig. 10: Performance evaluation in the single-core scenario.

prefetcher. PPF is located at the L2C since it is built on top
of the SPP prefetcher. When using PPF, we configure SPP as
previous work indicates [14] to fully exploit the advantages of
PPF. (ii) Hermes [13], the state-of-the-art off-chip predictor
that removes long-lasting load requests from the critical path
by issuing speculative requests to the DRAM controller. (iii)
Hermes+PPF, a scheme that uses both Hermes as off-chip
predictor and PPF as a prefetch filter.

VI. EVALUATION

A. Single-Core Evaluation

This section evaluates TLP in the single-core context
following the methodology that Section V presents. Figure 10
shows the performance gains provided by PPF, Hermes,
Hermes+PPF, and TLP in the single-core context over a
baseline described in Section V, which has no off-chip predictor
neither L1D prefetch filter. Specifically, Figures 10a and 10b
present performance results when using IPCP and Berti as L1D
prefetchers, respectively. Both figures display speedup with
respect to the baseline system in the y-axis. The x-axis shows
the selected SPEC and GAP workloads. For each benchmark
suite we sort workloads in increasing order of MPKI in the
baseline system. This evaluation indicates that TLP significantly
outperforms state-of-the-art approaches for off-chip prediction
(Hermes), prefetch filtering (PPF), and a combination of
them (Hermes+PPF). In the scenario considering IPCP as
L1D prefetcher, TLP yields 6.2% geometric mean speedup
with respect to the baseline system while PPF, Hermes, and
Hermes+PPF bring -0.2%, 5.2%, and 4.7% geometric mean
speedups, respectively. When considering the Berti prefetcher,
TLP yields 8.1% geometric mean speedup as compared to
1.7%, 4.8%, and 6.1% for PPF, Hermes, and Hermes+PPF,
respectively. TLP achieves larger performance gains for GAP
than SPEC. Since GAP workloads are strongly memory bound,
the reductions in terms of DRAM transactions that TLP
achieves compared to Hermes particularly benefit GAP.

To identify the source of TLP performance improvements we
quantify the impact of PPF, Hermes, Hermes+PPF, and TLP

−100

0

100

In
cr

ea
se

D
R

A
M

T
ra

n
sa

ct
io

n
s

(%
)

SPEC GAP

PPF

Hermes

Hermes + PPF

TLP

0

100

-25

25

50

75

P
P

F

H
e
r
m

e
s

H
e
r
m

e
s

+
P

P
F

T
L

P

(a) IPCP

-100

0

100

-50

50

In
cr

ea
se

D
R

A
M

T
ra

n
sa

ct
io

n
s

(%
)

SPEC GAP

PPF

Hermes

Hermes + PPF

TLP

0

60

-15

15

30

45

P
P

F

H
e
r
m

e
s

H
e
r
m

e
s

+
P

P
F

T
L

P

(b) Berti

Fig. 11: Increase in DRAM transactions in the single-core
scenario. Lower is better.

in terms of number of DRAM accesses. Figure 11 shows this
evaluation. Specifically, Figure 11a presents results obtained
using IPCP, while Figure 11b considers Berti. The y-axis
displays the increase in DRAM transactions processed by
the memory controller in the single-core context while the
x-axis shows the SPEC and GAP workloads sorted in terms of
MPKI. When using IPCP, TLP reduces DRAM transactions by
an average of 30.7% over the baseline while PPF, Hermes,
and Hermes+PPF increase average DRAM transactions by
7.7%, 5.2%, and 13.3%, respectively. When considering
Berti, TLP reduces the number of DRAM transactions by an
average of 14.2% over the baseline, while PPF, Hermes, and
Hermes+PPF trigger of 8.8%, 9.6%, and 16.9% additional
DRAM transactions, respectively.

To further explain the performance gain obtained by TLP,
we evaluate the accuracy of the considered L1D prefetchers
(IPCP and Berti) when PPF, Hermes, Hermes+PPF, and
TLP operate in the system. Figure 12 presents the results.
Specifically, Figures 12a and 12b present the accuracy of the
IPCP and Berti prefetchers, respectively. The key takeaway
of this comparison is that TLP increases the accuracy of the
L1D prefetchers. Across all SPEC and GAP workloads, IPCP
experiences an average accuracy of 20.6%, 20.6%, 20.3%,
and 38.0% when PPF, Hermes, Hermes+PPF, and TLP
operate in the system, respectively. Finally, we observe similar
behavior for the Berti prefetcher; Figure 12b reveals that Berti
experiences the highest accuracy with TLP.

Data in Figures 11 and 12 indicate that TLP successfully
reduces the number of DRAM transactions that state-of-the-art
off-chip prediction and prefetch filtering approaches trigger.

B. Multi-Core Evaluation

This section evaluates the performance of TLP in the
multi-core scenario following the methodology that Section V
presents. In addition, this section indicates the contribution of
each specific TLP component to final performance (Section

SPEC GAP ALL
0

50

100
A

cc
u

ra
cy

(%
)

PPF

Hermes

Hermes + PPF TLP

(a) IPCP

SPEC GAP ALL
0

50

100

A
cc

u
ra

cy
(%

)

PPF

Hermes

Hermes + PPF TLP

(b) Berti

Fig. 12: Accuracy of the L1D prefetchers.

VI-B1), and evaluates TLP considering different DRAM
bandwidth scenarios (Section VI-B2).

Figure 13 shows the performance gains provided by PPF,
Hermes, Hermes+PPF, and TLP in the multi-core context
over the baseline system that Section V describes. Specifically,
Figures 13a and 13b present performance results considering
IPCP and Berti, respectively. Both figures display speedup
over the baseline system in the y-axis. The x-axis shows the
multi-core SPEC and GAP workloads sorted in increasing
order in terms of MPKI. The sorting is done independently
within each benchmark suite. Considering the IPCP prefetcher,
TLP improves geometric mean performance by 11.5% as
compared to -3.3%, 3.0%, and -0.5% for PPF, Hermes,
and Hermes+PPF, respectively. When considering Berti as
L1D prefetcher we observe similar trends. Specifically, TLP
yields a 11.8% geometric mean speedup over the baseline
as compared to -1.5%, 1.0%, and -0.3% for PPF, Hermes,
and Hermes+PPF, respectively. The main takeaway of this
experiment is that TLP provides significantly higher multi-core
performance than all considered prior proposals.

To explain the source of TLP performance improvements
in the multi-core context, we quantify the impact of PPF,
Hermes, Hermes+PPF, and TLP on the number of DRAM
accesses. Figure 14 shows the increase in terms of DRAM
transactions over the baseline system that Section V describes.
Figures 14a and Figure 14b show the impact on DRAM
transactions when IPCP and Berti operate at L1D, respectively.
Considering the IPCP prefetcher, TLP reduces the number
of DRAM transactions by an average of 17.7% over the
baseline while PPF, Hermes, and Hermes+PPF increase
DRAM transactions by 6.5%, 6.0%, and 13.4%, respectively.
We observe a similar behavior when Berti is used as L1D
prefetcher: TLP reduces the average DRAM transactions
by 6.3% while PPF, Hermes, and Hermes+PPF increase
DRAM transactions by 9.8%, 1.4%, and 7.8%, respectively. The
main takeaway is that TLP outperforms prior approaches for
off-chip prediction and prefetch filtering in multi-core contexts
since it significantly reduces the DRAM pressure.

−100

0

100

S
p

ee
d
u
p

(%
) SPEC GAP

PPF

Hermes

Hermes + PPF

TLP 0

20

40

P
P

F

H
e
r
m

e
s

H
e
r
m

e
s

+
P

P
F

T
L

P

(a) IPCP

−100

0

100

S
p

ee
d

u
p

(%
) SPEC GAP

PPF

Hermes

Hermes + PPF

TLP 0

20

40

P
P

F

H
e
r
m

e
s

H
e
r
m

e
s

+
P

P
F

T
L

P

(b) Berti

Fig. 13: Performance improvement in the multi-core scenario.

-100

0

100

In
cr

ea
se

D
R

A
M

T
ra

n
sa

ct
io

n
s

(%
)

SPEC GAP

PPF

Hermes

Hermes + PPF

TLP

0

50

-25

25

P
P

F

H
e
r
m

e
s

H
e
r
m

e
s

+
P

P
F

T
L

P

(a) IPCP

-100

0

100

In
cr

ea
se

D
R

A
M

T
ra

n
sa

ct
io

n
s

(%
)

SPEC GAP

PPF

Hermes

Hermes + PPF

TLP

0

50

-20
-10

10
20
30
40

P
P

F

H
e
r
m

e
s

H
e
r
m

e
s

+
P

P
F

T
L

P

(b) Berti

Fig. 14: Increase in DRAM transactions in the multi-core
scenario. Lower is better.

1) Performance Contribution of Each TLP Component:
This section evaluates the contribution of each specific TLP
component to the final performance. To do so, we consider five
different scenarios besides TLP: i) FLP, which consits of just
the FLP predictor without the selective delay mechanism. ii)
SLP, which consists of just the SLP predictor. iii) Two-Step
Predictor (TSP), which consists of FLP without the
selective delay mechanism, and SLP without the feature based
on FLP output. TSP consumes FLP predictions before the
completion of L1D accesses , as Hermes does. Therefore, the
difference between TSP and Hermes is the use of SLP. iv)
Delayed TSP, a technique similar to TSP with the exception
that always delays the consumption of FLP predictions upon
L1D misses. v) Selective TSP, an evolution of Delayed
TSP that uses selective delay. Finally, we consider TLP. The
difference between TLP and Selective TSP is that TLP
uses a feature based on the output of FLP to drive the
predictions of SLP. Figure 15 shows the performance of these

0

5

10

S
p

ee
d

u
p

(%
)

FLP SLP TSP Delayed TSP Selective TSP TLP

Fig. 15: Performance contribution of each TLP component.

1.6 GB/s 3.2 GB/s 6.4 GB/s 12.8 GB/s 25.6 GB/s

0

20

-10

10

S
p

ee
d

u
p

(%
)

PPF

Hermes

Hermes + PPF

TLP

(a) Performance improvement.

1.6 GB/s 3.2 GB/s 6.4 GB/s 12.8 GB/s 25.6 GB/s

0

50

-25

25

In
cr

ea
se

D
R

A
M

T
ra

n
sa

ct
io

n
s

(%
)

PPF Hermes Hermes + PPF TLP

(b) Increase in DRAM transactions.

Fig. 16: Impact of DRAM bandwidth on geometric mean
performance and average number of DRAM transactions in
the multi-core context.

six approaches when IPCP operates at L1D. We observe that
by incrementally adding parts of our design to form our
final proposal, TLP, we can compound performance as FLP,
SLP, TSP, Delayed TSP, and Selective TSP yield
respectively 2.9%, 6.9%, 8.4%, 10.2%, and 11.4% geometric
mean speedups over the baseline. Our final proposal, TLP
provides a 11.5% speedup over the baseline, justifying our
design choices. Although the difference between TLP and
Selective TSP in terms of geometric mean speed-ups
is rather small, it becomes larger for workloads with high
correlation between off-chip load demand requests and off-
chip L1D prefetch requests like bc.road. We observe a very
similar behavior when we consider Berti as L1D prefetcher.

2) Sensitivity Analysis on DRAM Bandwidth: This section
evaluates TLP, PPF, Hermes, and Hermes+PPF on scenarios
with 1.6 GB/s per core up to 25.6 GB/s per core. Figures 16a
and 16b show the geometric mean performance and the impact
on DRAM accesses of TLP of these four approaches in the
multi-core context, respectively.

Figure 16a indicates that TLP outperforms the other ap-
proaches under memory bandwidth regimes between 1.6 and
6.4 GB/s per core. The improvement achieved by TLP in
the 1.6 GB/s scenario is 21.2%, while TLP obtains a 6.9%
geometric mean speedup over the baseline when there are 25.6
GB/s per core available. Even in scenarios with unrealistically
large memory bandwidth per core ratios (e.g., 12.8 or 25.6
GB/s per core), TLP outperforms Hermes and PPF since it
avoids cache pollution due to inaccurate prefetching. In these

Single-Core Multi-Core

0

10

S
p

ee
d
u
p

(%
) IPCP + 7KB Hermes + 7KB TLP

(a) IPCP

Single-Core Multi-Core

0

10

S
p

ee
d
u
p

(%
) Berti + 7KB Hermes + 7KB TLP

(b) Berti

Fig. 17: Performance improvement of designs enhanced with
TLP’s storage budget.

scenarios, the unrealistic aboundance of memory bandwidth
allows Hermes+TLP to deliver larger performance than TLP.

Figure 16b shows the impact in terms of DRAM transactions
for all considered approaches on five memory bandwidth
per core scenarios. TLP achieves a remarkable reduction in
terms of DRAM transactions over the baseline in all scenarios.
Specifically, TLP decreases DRAM transactions from 24.8%
(1.6 GB/s core scenario) to 17.6% (25.6 GB/s per core scenario)
as compared to the baseline.

C. Designs Enhanced with TLP’s Storage Budget

In addition to the results provided in the previous sections,
we also evaluate other designs leveraging 7KB of extra storage
over IPCP, Berti, and Hermes. We compare them to TLP.
Figure 17 shows the evaluation of these designs in both single-
core and multi-core contexts. In the single-core context, adding
7KB of extra storage to IPCP and Berti does not leverage
any performance benefits over the baseline. When Hermes is
enhanced with 7KB of extra storage, it provides performance
improvements close to the baseline Hermes, i.e., 5.2% and
4.8% geometric mean speedup for IPCP and Berti, respectively.
In comparison, TLP leverages 6.2% and 8.1% geometric mean
speedup for IPCP and Berti. In the multi-core context, we
observe a similar behavior where adding extra storage to
the prefetchers does not leverage performance improvements.
Finally, we observe that Hermes shows a similar behavior as
its counterpart using no extra storage.

VII. RELATED WORK

To the best of our knowledge, this is the first work to provide
a cooperative solution for off-chip prediction and adaptive
prefetch filtering using neural methods. Sections II, III-B,
and VI describe, analyze and compare our proposal against
Hermes [13], the state-of-the-art off-chip predictor, respectively.
Sections II and VI compare our proposal against PPF [14], the
state-of-the-art prefetch filter. This section focuses on other
related work targeting memory hierarchy optimizations.

Hit/Miss Prediction. Jalili and Erez [26] proposed LP, a
scheme that uses a flat-array to track the residency of cache
lines in the cache hierarchy. This flat-array is stored in a
reserved section of DRAM, and a small cache keeps recently
used entries of the flat-array for future predictions. LP presents
several challenges. First, it can have a high false-positive
prediction rate. Second, the size of LP can grow very large,
leading to significant latency and storage overheads. Third, LP
does not address the large bandwidth consumption of cache
prefetchers. In contrast, TLP requires only 4KB per core of
storage overhead, and 56 additional bits per prefetch request,
while producing accurate off-chip predictions for both load
and prefetch requests. With its more streamlined approach,
TLP offers a promising solution to the challenges presented
by other prefetching methods, paving the way for improved
performance and efficiency in modern computing systems.

Data Prefetching. Stream and strided cache prefetchers are
unable to effectively prefetch for the indirect memory access
patterns of graph-processing workloads [7], [10]. Yu et al.
[55] propose a microarchitectural prefetcher that identifies and
prefetches indirect memory access patterns without requiring
any application nor software information. Ainsworth et al. [6]
propose a prefetcher that leverages application-level information
to capture indirect memory access patterns. Basak et al. [10]
propose DROPLET, a physically decoupled prefetcher that takes
into account the reuse distances when applying prefetching
for different graph types. Although effective, these hardware
prefetchers increase memory bandwidth consumption. In con-
trast, our proposal reduces the cost of hardware prefetching
while keeping its advantages, as Section VI shows.

Cache Bypassing. Recent research has proposed several
complex cache replacement and bypassing policies [25], [30],
[45], [52], that have demonstrated significant performance gains
in general-purpose computing applications. However, recent
studies [27] show that these policies are ineffective when
applied to workloads managing irregular and sparse structures
like graphs due to the irregularity of the memory access patterns
that these workloads display.

Memory Optimizations for Graph-Processing Applications.
Recent work demonstrates the benefits of optimizing the
memory hierarchy for graph applications. Ozdal et al. [38] use
scratchpads to store vertex and edge data of graph-processing
applications, while Gonzalez et al. [23] employ a large eDRAM
scratchpad to accommodate larger volumes of graph data than
the conventional SRAMs. Several prior works [5], [20], [36],
[47], [56] reduce the latency cost of graph memory accesses
by executing graph-processing operations close to DRAM,
partially hiding the latency cost of the corresponding memory
accesses. TLP complements these works since it improves the
cache management of a wide range of applications.

Redesigning the Cache Hierarchy. The Distill Cache [41]
approach reserves a section of the L2C to place the used
words of a cache line when that line is elected for eviction.
This design improves the use of cache storage capacity by
evicting just the unused words of each cache line. In contrast,

our proposal manages the pervasiveness of highly irregular
access patterns and dynamically classifies memory accesses as
either regular or irregular. By labeling some memory accesses
as not cache-friendly, we avoid cache pollution and useless
cache look-ups. The Victim Cache [31] proposal is a small
fully-associative cache, found on the refill path of the LLC. It
contains eviction victims of the cache to which it is attached
and tries to decrease conflict misses. On LLC misses, both
the LLC and the Victim Cache are looked-up; if the requested
cache block is found in the Victim Cache, the LLC victim and
the Victim Cache entry are swapped, thus lowering the miss
latency. On a Victim Cache miss, the block is fetched from
DRAM and the LLC victim is inserted in the Victim Cache.
While the Victim Cache has been proven effective at improving
the performance of SPEC workload [2], [3], it relies heavily
on spatial locality as it inserts caches victims. Our proposal
does not rely on locality assumptions and shortcuts the cache
hierarchy when it is predicted to be inefficient.

VIII. CONCLUSIONS

This work introduces Two Level Perceptron (TLP) predictor,
a neural approach that leverages two perceptron predictors
to apply off-chip prediction to both demand and prefetch
requests. This technique prevents memory bandwidth waste due
to inaccurate prefetch requests or wrong off-chip prediction,
and avoids cache pollution due to prefetching. We evaluate
TLP against several previous approaches (PPF [14] and Her-
mes [13]) considering 55 single-core workloads, 200 multi-core
workloads, and two state-of-the-art L1D prefetchers, IPCP [39]
and Berti [37]. TLP achieves a 11.5% geometric mean speedup
when deployed on a multi-core system using the IPCP L1D
prefetcher, while the best previous approach, Hermes, delivers
3.0%. When considering Berti, Hermes delivers 0.9% geometric
mean speedup while TLP obtains 11.8% improvement. Our
evaluation also demonstrates that TLP significantly reduces
the overhead in terms of DRAM bandwidth transactions that
previous approaches incur in all considered scenarios.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous MICRO 2023
and HPCA 2024 reviewers for their valuable comments and
constructive feedback that significantly improved the quality of
the paper. This work has been partially supported by the Euro-
pean HiPEAC Network of Excellence, by the Spanish Ministry
of Science and Innovation MCIN/AEI/10.13039/501100011033
(contracts PID2019-107255GB-C21 and PID2019-105660RB-
C22) and by the Generalitat de Catalunya (contract 2021-SGR-
00763). This work is supported by the National Science Founda-
tion through grant CCF-1912617 and generous gifts from Intel.
Marc Casas has been partially supported by the Grant RYC-
2017-23269 funded by MCIN/AEI/10.13039/501100011033
and by ESF Investing in your future. Els autors agraeixen
el suport del Departament de Recerca i Universitats de la
Generalitat de Catalunya al Grup de Recerca ”Performance
understanding, analysis, and simulation/emulation of novel
architectures” (Codi: 2021 SGR 00865).

APPENDIX

A. Abstract

Our artifact provides i) the implementation of TLP, ii) the
simulation infrastructure, iii) the set of workloads, iv) scripts
for launching the experiments, and v) Python scripts bundled
in Jupyter notebooks to exploit the simulation results and
reproduce some of the key figures of this paper.

B. Artifact check-list (meta-information)
• Program: Memory traces of SPEC 2006 [2], SPEC 2017 [3],

and GAP [11] workloads.
• Compilation: GNU GCC and CMake.
• Metrics: Performance improvements, reduction in DRAM

transactions, statistics on inaccurate off-chip predictions, L1D
useful & useless prefetches, and L1D prefetchers’ accuracy.

• Output: We provide scripts that generate all single-core figures
(Figures 1, 2, 4, 5, 6, 10, 11, 12).

• Experiments: We provide scripts that submit the required jobs.
The only requirement is a SLURM manager.

• How much disk space required (approximately)?: 140GB.
• How much time is needed to prepare workflow (approxi-

mately)?: About 1 hour.
• How much time is needed to complete experiments (approx-

imately)?: About 12 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?:
• Workflow framework used?: SLURM for job management.
• Archived (provide DOI)?: The code is available at

https://doi.org/10.5281/zenodo.10100304. The trace set is avail-
able in 3 volumes:

– Volume 1: https://doi.org/10.5281/zenodo.10083542
– Volume 2: https://doi.org/10.5281/zenodo.10088347
– Volume 3: https://doi.org/10.5281/zenodo.10088525

C. Description

1) How to access: Our artifact is available at
https://doi.org/10.5281/zenodo.10100304.

2) Hardware dependencies: Any hardware capable of com-
piling and running ChampSim [4].

3) Software dependencies: Our artifact depends on the
following tools: CMake, Jupyter, Python 3.8.10, matplotlib,
and SLURM.

4) Data sets: Memory traces of SPEC 2006 [2], SPEC
2017 [3], and GAP [11] workloads.

D. Installation

First, Download the artifact from our GitHub repository using
the appropriate git clone command. Second, download the
trace set from the following Zenodo records:

• Volume 1: https://doi.org/10.5281/zenodo.10083542
• Volume 2: https://doi.org/10.5281/zenodo.10088347
• Volume 3: https://doi.org/10.5281/zenodo.10088525

E. Experiment workflow

To reproduce all the single-core figures of this work, take
the following steps:

• cd TLP-HPCA30-artifact
• Move the three volumes of the traces artifact to the root

of the code’s artifact.

• Extract the traces using tar -xMf
TLP-HPCA30-artifact-traces.VOLUME1.tar.
This command is interactive and will request you to
provide the name of the next archive’s volume as follows
TLP-HPCA30-artifact-traces.VOLUME2.tar,
etc. A new directory named traces/ will be present in
the artifact directory.

• set paths and username in scripts/-
run_single_core.sh (lines 4, 7, 8, 10, and 11),
scripts/run_single_core_legacy.sh (lines 4,
7, 8, 10, and 11), scripts/run_single_core.job
(lines 6, 9, 10, and 12).

• Execute ./scripts/compile_single_core.sh
to compile the binaries.

• Execute scripts/run_single_core.sh and
scripts/run_single_core_legacy.sh to
launch all single-core simulations.

Running all the jobs takes around 12 hours, depending on
the cluster and the number of jobs that can be launched in
parallel.

F. Evaluation and expected results

When all jobs are finished, generate the single-core figures
using the Jupyter notebooks provided in the notebooks
directory. We recommend using the Jupyer extension in the VS
Code editor, as it is how the workflow was originally designed.

The single-core figures will be available in the plots/
directory.

G. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] Cascade lake - microarchitectures - intel - WikiChip. [Online].
Available: https://en.wikichip.org/wiki/intel/microarchitectures/cascade
lake#Memory Hierarchy

[2] SPEC CPU® 2006. [Online]. Available: https://www.spec.org/cpu2006/
[3] SPEC CPU® 2017. [Online]. Available: https://www.spec.org/cpu2017/
[4] “ChampSim,” https://crc2.ece.tamu.edu/, 2021, [Online].
[5] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-

in-memory accelerator for parallel graph processing,” in 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA),
2015, pp. 105–117.

[6] S. Ainsworth and T. M. Jones, “Graph Prefetching Using Data Structure
Knowledge,” in Proceedings of the 2016 International Conference on
Supercomputing, ser. ICS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 1–11. [Online]. Available:
https://doi.org/10.1145/2925426.2926254

[7] V. Balaji, N. Crago, A. Jaleel, and B. Lucia, “P-OPT: Practical Optimal
Cache Replacement for Graph Analytics,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2021, pp. 668–681.

[8] V. Balaji and B. Lucia, “When is graph reordering an optimization?
studying the effect of lightweight graph reordering across applications
and input graphs,” in 2018 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2018, pp. 203–214.

https://doi.org/10.5281/zenodo.10100304
https://doi.org/10.5281/zenodo.10083542
https://doi.org/10.5281/zenodo.10088347
https://doi.org/10.5281/zenodo.10088525
https://doi.org/10.5281/zenodo.10100304
https://github.com/itisntalex/TLP-HPCA30-artifact
https://doi.org/10.5281/zenodo.10083542
https://doi.org/10.5281/zenodo.10088347
https://doi.org/10.5281/zenodo.10088525
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake#Memory_Hierarchy
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake#Memory_Hierarchy
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://crc2.ece.tamu.edu/
https://doi.org/10.1145/2925426.2926254

[9] V. Balaji and B. Lucia, “Combining data duplication and graph reordering
to accelerate parallel graph processing,” in Proceedings of the 28th
International symposium on high-performance parallel and distributed
computing, 2019, pp. 133–144.

[10] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and
Y. Xie, “Analysis and optimization of the memory hierarchy for graph
processing workloads,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2019, pp. 373–386.

[11] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[12] S. Beamer, K. Asanović, and D. Patterson, “Reducing pagerank commu-
nication via propagation blocking,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2017, pp.
820–831.

[13] R. Bera, K. Kanellopoulos, S. Balachandran, D. Novo, A. Olgun,
M. Sadrosadat, and O. Mutlu, “Hermes: Accelerating long-latency load
requests via perceptron-based off-chip load prediction,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO), Oct
2022, pp. 1–18.

[14] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-based prefetch filtering,” in Proceedings of the
46th International Symposium on Computer Architecture, 2019, pp. 1–
13.

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 72–81. [Online].
Available: https://doi.org/10.1145/1454115.1454128

[16] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
mathematical sociology, vol. 25, no. 2, pp. 163–177, 2001.

[17] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[18] T. D. Bui, S. Ravi, and V. Ramavajjala, “Neural graph learning: Training
neural networks using graphs,” in Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, ser. WSDM
’18. New York, NY, USA: Association for Computing Machinery, 2018,
p. 64–71. [Online]. Available: https://doi.org/10.1145/3159652.3159731

[19] O. Evelien and R. Rousseau, “Social network analysis: A powerful
strategy, also for the information sciences,” Journal of Information
Science, vol. 28, no. 6, p. 441–453, December 2002.

[20] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for
in-memory analytics frameworks,” in 2015 International Conference on
Parallel Architecture and Compilation (PACT), 2015, pp. 113–124.

[21] E. Garza, S. Mirbagher-Ajorpaz, T. A. Khan, and D. A. Jiménez,
“Bit-level perceptron prediction for indirect branches,” in Proceedings of
the 46th International Symposium on Computer Architecture, ser. ISCA
’19. New York, NY, USA: Association for Computing Machinery, 2019,
pp. 27–38. [Online]. Available: https://doi.org/10.1145/3307650.3322217

[22] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jimenez, E. Teran,
S. Pugsley, and J. Kim, “The championship simulator: Architectural
simulation for education and competition,” 2022.

[23] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph Processing in a Distributed Dataflow
Framework,” in Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’14. USA:
USENIX Association, 2014, p. 599?613.

[24] C. T. Have and L. J. Jensen, “Are graph databases ready for
bioinformatics?” Bioinformatics, vol. 29, no. 24, pp. 3107–3108, 10
2013. [Online]. Available: https://doi.org/10.1093/bioinformatics/btt549

[25] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High Performance
Cache Replacement Using Re-Reference Interval Prediction (RRIP),” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture, ser. ISCA ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 60–71. [Online]. Available:
https://doi.org/10.1145/1815961.1815971

[26] M. Jalili and M. Erez, “Reducing load latency with cache level prediction,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), April 2022, pp. 648–661.

[27] A. V. Jamet, L. Alvarez, D. A. Jiménez, and M. Casas, “Characterizing
the impact of last-level cache replacement policies on big-data
workloads,” in 2020 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2020, pp. 134–144. [Online].

Available: https://upcommons.upc.edu/bitstream/handle/2117/343622/
IISWC20-paper.pdf?sequence=1

[28] D. Jimenez, “Piecewise linear branch prediction,” in 32nd International
Symposium on Computer Architecture (ISCA’05), 2005, pp. 382–393.

[29] D. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, ser. HPCA ’01, 2001, pp. 197–206.

[30] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), ser. MICRO-50 ’17, IEEE. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 436–448. [Online]. Available:
https://doi.org/10.1145/3123939.3123942

[31] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” ACM
SIGARCH Computer Architecture News, vol. 18, no. 2SI, pp. 364–373,
1990.

[32] S. M. Khan, Y. Tian, and D. A. Jiménez, “Sampling dead block prediction
for last-level caches,” in 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010, pp. 175–186.

[33] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–12.

[34] G. Memik, G. Reinman, and W. Mangione-Smith, “Just say no: benefits
of early cache miss determination,” in The Ninth International Symposium
on High-Performance Computer Architecture, 2003. HPCA-9 2003.
Proceedings., 2003, pp. 307–316.

[35] U. Meyer and P. Sanders, “δ-stepping: a parallelizable shortest path
algorithm,” Journal of Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[36] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:
Enabling Instruction-Level PIM Offloading in Graph Computing Frame-
works,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 457–468.

[37] A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibánez, V. Viñals-
Yúfera, and A. Ros, “Berti: an accurate local-delta data prefetcher,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 975–991.

[38] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns,
and O. Ozturk, “Energy Efficient Architecture for Graph Analytics
Accelerators,” in Proceedings of the 43rd International Symposium on
Computer Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 166–177.
[Online]. Available: https://doi.org/10.1109/ISCA.2016.24

[39] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction
pointer classifier-based spatial hardware prefetching,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 118–131.

[40] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 318–
319, 2003.

[41] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line Distillation:
Increasing Cache Capacity by Filtering Unused Words in Cache Lines,” in
2007 IEEE 13th International Symposium on High Performance Computer
Architecture, 2007, pp. 250–259.

[42] A. Sembrant, E. Hagersten, and D. Black-Schaffer, “The direct-to-data
(d2d) cache: Navigating the cache hierarchy with a single lookup,”
SIGARCH Comput. Archit. News, vol. 42, no. 3, p. 133–144, jun 2014.
[Online]. Available: https://doi.org/10.1145/2678373.2665694

[43] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-
address filter: A unified mechanism to address both cache pollution
and thrashing,” in Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
355–366. [Online]. Available: https://doi.org/10.1145/2370816.2370868

[44] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Mitigating prefetcher-caused pollution using
informed caching policies for prefetched blocks,” vol. 11, no. 4, jan
2015. [Online]. Available: https://doi.org/10.1145/2677956

[45] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to
the cache replacement problem,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
413–425.

[46] Y. Shiloach and U. Vishkin, “An o (log n) parallel connectivity algorithm,”
Computer Science Department, Technion, Tech. Rep., 1980.

https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/3159652.3159731
https://doi.org/10.1145/3307650.3322217
https://doi.org/10.1093/bioinformatics/btt549
https://doi.org/10.1145/1815961.1815971
https://upcommons.upc.edu/bitstream/handle/2117/343622/IISWC20-paper.pdf?sequence=1
https://upcommons.upc.edu/bitstream/handle/2117/343622/IISWC20-paper.pdf?sequence=1
https://doi.org/10.1145/3123939.3123942
https://doi.org/10.1109/ISCA.2016.24
https://doi.org/10.1145/2678373.2665694
https://doi.org/10.1145/2370816.2370868
https://doi.org/10.1145/2677956

[47] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating
Graph Processing Using ReRAM,” in 2018 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2018, pp.
531–543.

[48] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016, pp. 1–12.

[49] G. Vavouliotis, L. Alvarez, V. Karakostas, K. Nikas, N. Koziris, D. A.
Jiménez, and M. Casas, “Exploiting page table locality for agile tlb
prefetching,” in Proceedings of the 48th International Symposium on
Computer Architecture, 2021.

[50] G. Vavouliotis, G. Chacon, L. Alvarez, P. V. Gratz, D. A. Jiménez, and
M. Casas, “Page size aware cache prefetching,” in 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2022, pp. 956–
974.

[51] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing by
graph ordering,” in Proceedings of the 2016 International Conference
on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1813?1828. [Online].
Available: https://doi.org/10.1145/2882903.2915220

[52] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, 2011, pp. 430–441.

[53] J. Yang and J. Leskovec, “Community-affiliation graph model for over-
lapping network community detection,” in 2012 IEEE 12th international
conference on data mining. IEEE, 2012, pp. 1170–1175.

[54] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation techniques
for improving load related instruction scheduling,” SIGARCH Comput.
Archit. News, vol. 27, no. 2, p. 42–53, may 1999. [Online]. Available:
https://doi.org/10.1145/307338.300983

[55] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect Memory
Prefetcher,” in Proceedings of the 48th International Symposium on
Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 178–190. [Online]. Available:
https://doi.org/10.1145/2830772.2830807

[56] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “GraphP: Reducing Communication for PIM-Based Graph
Processing with Efficient Data Partition,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2018,
pp. 544–557.

[57] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 293–302.

[58] X. Zhuang and H.-H. Lee, “A hardware-based cache pollution filtering
mechanism for aggressive prefetches,” in 2003 International Conference
on Parallel Processing, 2003. Proceedings., 2003, pp. 286–293.

https://doi.org/10.1145/2882903.2915220
https://doi.org/10.1145/307338.300983
https://doi.org/10.1145/2830772.2830807

	Introduction
	Background
	Off-Chip Prediction
	Prefetch Filtering

	Motivation
	Cache Behavior of Modern Workloads
	Impact of Hermes
	DRAM Transactions
	Analysis of Hermes Predictions

	Off-Chip Prediction for L1D Prefetch Filtering

	Two Level Perceptron Prediction
	First Level Perceptron (FLP) Predictor
	Second Level Perceptron (SLP) Predictor
	Building a Multi-Level Perceptron Predictor
	TLP Hardware Requirements and Latency

	Experimental Methodology
	Simulation Methodology
	Workloads
	Single-Core Evaluation
	Multi-Core Evaluation
	Alternative Techniques

	Evaluation
	Single-Core Evaluation
	Multi-Core Evaluation
	Performance Contribution of Each TLP Component
	Sensitivity Analysis on DRAM Bandwidth

	Designs Enhanced with TLP's Storage Budget

	Related Work
	Conclusions
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results
	Methodology

	References

