
Instruction-Aware Cooperative TLB and Cache
Replacement Policies

Dimitrios Chasapis∗
dimitrios.chasapis@bsc.es

Barcelona Supercomputing Center
Barcelona, Spain

Georgios Vavouliotis∗
gvavou5@gmail.com
Zurich, Switzerland

Daniel A. Jiménez
djimenez@acm.org

Texas A&M University
College Station, United States

Marc Casas
marc.casas@bsc.es

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

Barcelona, Spain

Abstract
Modern server and data center applications are character-
ized not only by large datasets, but also by large instruc-
tion footprints that incur frequent cache and Translation
Lookaside Buffer (TLB) misses due to instruction accesses.
Instruction TLB misses are particularly problematic as they
cause pipeline stalls that significantly harm performance.

This paper proposes cooperative last-level TLB (STLB) and
L2 cache (L2C) replacement policies targeting workloads
with large instruction footprints. We propose Instruction
Translation Prioritization (iTP), an STLB replacement policy
that maximizes the number of instruction hits in the STLB
at the expense of increasing data page walks. To compensate
for the increase in data page walks, we propose extended
Page Table Prioritization (xPTP), a new L2C replacement pol-
icy that amplifies the benefits of iTP by effectively reducing
L2C misses due to data page walks. Our proposal, iTP+xPTP,
combines iTP at STLB and xPTP at L2C. iTP+xPTP employs
an adaptive mechanism that switches between xPTP and
LRU policies at L2C based on the pressure placed on the vir-
tual memory subsystem. Our proposal, iTP+xPTP, improves
single-core geometric mean performance by 18.9% over a
baseline that uses the LRU replacement policy at both STLB
and L2C across a set of contemporary server workloads. Un-
der SMT co-location, the corresponding performance uplift
is 11.4%. Finally, we show that iTP+xPTP outperforms the
state-of-the-art STLB and cache replacement policies.

CCS Concepts: • Software and its engineering→Virtual
memory; • Applied computing → Data centers.
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1 Introduction

Virtual memory based on paging is prevalent in contem-
porary computing systems. Each memory access in page-
based virtual memory systems requires translating a vir-
tual address to a physical address. Translation Lookaside
Buffers (TLBs) mitigate address translation overheads by
storing the recently used virtual-to-physical mappings. Re-
cent literature shows that frequent last-level TLB (STLB)
misses incur significant performance and energy overheads
[13, 15, 18, 25, 39, 47]. Prior work that reduces address trans-
lation overheads can be broadly classified in two categories:
i) techniques that reduce the number of STLB misses [16,
17, 36, 37, 62, 65, 66, 69, 70, 81, 87] and ii) techniques that
mitigate the latency cost of page walks [42, 53].

Modern server and data center applications are character-
ized not only by large datasets but also by large instruction
footprints [14, 39, 61, 88]. These large footprints incur fre-
quent cache and STLB misses due to instruction accesses,
which constitute a major performance painpoint because
they cause frequent pipeline stalls. This problem is likely to
be exacerbated in the future since the instruction footprint of
server applications increases yearly by up to 30% [39, 52, 74].
To make matters worse, frequent STLB misses (for both data
and instruction accesses) also increase cache pressure since
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they trigger page walks that insert in the cache hierarchy
memory blocks containing page table entries.

A fundamental aspect of STLB performance is its replace-
ment policy. Processor vendors typically implement sim-
ple replacement policies for the STLB (e.g., LRU variations
[10, 66, 70]). To improve TLB performance for address trans-
lation bound applications, previous work [55] proposes a
predictive replacement policy for the STLB. However, none
of the previously proposed STLB replacement policies specif-
ically targets reducing instruction STLB misses, which can
potentially stall the pipeline and are more harmful for perfor-
mance than data STLB misses whose latency can be partially
hidden in out-of-order cores. Although neglecting STLB in-
struction misses does not cause performance degradation
for desktop and High-Performance Computing (HPC) work-
loads, which have small instruction footprints that typically
fit in the first-level TLB, it leaves on the table many opportu-
nities for improving the performance of big-code workloads.

When it comes to replacement policies for the cache hier-
archy, prior work is classified in two categories: translation-
oblivious replacement policies [21, 23, 32, 35, 63, 71, 72, 77,
79] and translation-aware replacement policies [63, 79]. The
fundamental difference between these two categories is that
the latter differentiate their replacement decisions between
cache blocks storing instruction/data payload and cache
blocks storing Page Table Entries (PTEs). Prior translation-
aware cache replacement policies have two limitations: (i)
they do not distinguish between cache blocks accommodat-
ing instruction PTEs and data PTEs and (ii) they do not work
synergistically with the STLB replacement policy.

This paper proposes cooperative STLB and cache replace-
ment policies that target workloads with large instruction
footprints. For STLB, we propose the Instruction Translation
Prioritization (iTP) replacement policy. The design of iTP is
based on two observations: (i) workloads with large instruc-
tion footprints incur large instruction translation overheads,
and (ii) smartly prioritizing instruction translations over data
translations in the STLB has the potential to mitigate these
overheads. iTP maximizes the number of instruction hits in
the STLB at the expense of increasing data page walks. To
compensate for the increase in data page walks, we propose
the extended Page Table Prioritization (xPTP), a new L2C re-
placement policy that amplifies the benefits of iTP. xPTP is
built on the observation that the number of cache misses trig-
gered by data page walks may increase when using an STLB
replacement policy that prioritizes instruction entries over
data entries like iTP. In this context, xPTP effectively reduces
cache misses due to data page walk references and, therefore,
maximizes the benefits of iTP. Our proposal, iTP combined
with xPTP (iTP+xPTP) uses an adaptive scheme that disables
xPTP during phases with low STLB pressure, ensuring high
performance across different execution phases.

In summary, this paper makes the following contributions:

• This is the first study to show that prioritizing instruc-
tions over data in the STLB has the potential to provide
performance gains for server applications with large
code footprints. We show that doing so increases the
cache pressure due to page walks for data references.

• We propose two cooperative replacement policies, iTP
and xPTP, to drive the STLB and L2C replacement poli-
cies, respectively. Both iTP and xPTP are motivated by
an in-depth analysis of the TLB and cache behavior of
server workloads with large code footprints. iTP pri-
oritizes instruction translations over data translations
in the STLB at the cost of increasing data page walks.
xPTP compensates for the increase in data page walks
by improving the locality of data PTEs in the caches.

• We compare iTP and iTP+xPTP with state-of-the-art
translation-aware cache replacement policies (TDR-
RIP [79], PTP [63]) and the state-of-the STLB replace-
ment policy (CHiRP [55]) across 120 single- and 75 two-
hardware thread server workloads. iTP and iTP+xPTP
improve geomean performance by 2.2%, 18.9% and
0.3%, 11.4% with respect to LRU (for both STLB and
L2C) for the single- and two-hardware thread work-
loads, respectively. We show that iTP+xPTP outper-
forms the state-of-the-art cache and STLB replacement
policies in both isolation and combination.

• We show that our proposals, iTP and iTP+xPTP, pro-
vide consistent performance gains when different well-
established LLC replacement policies (e.g., SHiP [84],
Mockingjay [71]) are used.

2 Background
2.1 Virtual Memory Subsystem
Each memory access on page-based virtual memory sys-
tems requires a virtual-to-physical address translation. To
reduce the address translation costs, modern systems com-
bine software and hardware approaches. The page table is
a structure containing virtual-to-physical translations of all
pages loaded to memory and it is typically implemented as
a multi-level radix tree structure [4]. The TLB is a structure
that stores the most recently used virtual-to-physical trans-
lations to reduce the latency and energy costs of frequent
page walks. CPU vendors typically implement multi-level
TLBs with small instruction and data first level TLBs (ITLB
and DTLB) and a large last-level TLB (STLB) [10]. ITLB and
DTLB cache instruction and data Page Table Entries (PTEs),
respectively, while the STLB accommodates both data and
instruction PTEs within the same structure. Thus, workloads
with large data and code footprints (e.g., server and datacen-
ter applications) frequently contend for STLB capacity [80].

For each memory access, which can be either for instruc-
tion or data, the appropriate first-level TLB is looked up and,
upon a miss, the STLB is accessed. STLB misses imply that

Section 6.6 evaluates both unified and split STLB designs.
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the hardware page table walker traverses the page table to
find the required translation. Frequent STLB misses nega-
tively impact performance since page walks might require
multiple accesses to the memory hierarchy to find the re-
quested translation [12, 15, 19, 25, 39, 47, 58, 61, 81]. MMU
caches [15, 16, 64] significantly reduce the page walk mem-
ory references (and the latency cost of page walks) by storing
entries from the intermediate levels of the radix tree page
table. Finally, PTEs containing intermediate or leaf page ta-
ble levels are stored in the cache hierarchy. These PTEs may
contain data related to virtual-to-physical translations of
either instruction or data memory accesses [10].

2.2 Cache Replacement Policies
Previously proposed cache replacement policies can be broadly
classified in two categories. The first category consists of
translation-oblivious cache replacement policies, i.e., policies
that do not differentiate between cache blocks accommodat-
ing instructions or data payload, and blocks accommodating
PTEs. The translation-oblivious replacement policies either
consider recency to guide replacement [26, 34, 50, 59, 67, 75,
83], or drive replacement decisions based on previously ob-
served patterns [21, 23, 28, 32, 35, 43, 44, 46, 51, 71, 72, 77, 85].
Mockingjay [71] is the state-of-the-art translation-oblivious
replacement policy and uses patterns within long histories
to accurately predict reuse distances.
The second category contains translation-aware cache

replacement policies, i.e., policies that distinguish between
blocks containing data or instructions payload, and blocks
containing PTEs. The most recent translation-aware replace-
ment policies are i) T-DRRIP+T-SHiP [79], which prioritizes
keeping cache blocks that contain PTEs and favors evicting
blocks brought by demand loads that missed in the STLB
and ii) Page Table Prioritization (PTP) [63], which prioritizes
keeping blocks containing PTEs in both L2C and LLC. Note
that T-DRRIP+T-SHiP and PTP do not differentiate between
cache blocks containing instruction PTEs and data PTEs.

2.3 TLB Replacement Policies
Processor vendors typically implement simple replacement
policies for the TLB hierarchy (e.g., random for first-level
TLBs, and LRU variants for STLB [10, 66, 70]). To improve
TLB performance for applications that put high pressure on
the virtual memory subsystem, previous work [55] proposes
CHiRP, a table-based replacement policy for STLBs. CHiRP
requires augmenting each STLB entry with metadata bits to
ensure the correct update of its prediction table. Upon STLB
misses, CHiRP generates a signature for indexing the predic-
tion table. If the corresponding confidence counter exceeds
a predefined threshold, CHiRP predicts that the translation
will be reused soon and drives the STLB insertion policy ac-
cordingly. Notably, CHiRP does not distinguish between data
and instruction PTEs residing in the same STLB structure.
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Figure 1. Address translation overhead as a function of
different ITLB sizes across SPEC CPU 2006, SPEC CPU 2017
and Qualcomm Server workloads.

3 Motivation
This section motivates the need for synergistic STLB and
cache replacement policies to accelerate server workloads
with large instruction and data footprints. Section 3.1 shows
that the large code sizes of server applications cause sig-
nificant STLB pressure, increasing the cost of instruction
address translation. Section 3.2 demonstrates the potential
benefits of STLB replacement policies that prioritize instruc-
tion translations over data translations when dealing with
workloads with large instruction footprints. Section 3.3 high-
lights the need to consider the impact of instruction-aware
STLB replacement policies (Section 3.2) on the locality of
data address translations stored in the cache hierarchy.

3.1 Instruction Address Translation Cost
Contemporary server applications have large code footprints
that reach millions of instructions [14, 40, 41, 60, 61, 80] as
opposed to desktop and HPC applications that have small
(tens of KBs) instruction footprints [61, 80]. This variety of
instruction footprints across different application domains
results in different behaviors at the STLB level, which is
typically shared between instruction and data translations.

To quantify the impact of the code size on the TLB behav-
ior and the overall performance of a system across different
application types, Figure 1 presents the total CPU cycles
spent on instruction address translation as a function of dif-
ferent first-level instruction TLB (ITLB) sizes when consid-
ering the SPEC CPU 2006 and SPEC CPU 2017 (SPEC) [7, 8]
benchmarks and the Qualcomm Server workloads used in
the CVP-1 [1] and IPC-1 [9] contests. Section 5 describes in
detail the experimental setup we use to generate these data.
Figure 1 reveals that increasing the number of ITLB en-

tries reduces the instruction address translation overheads.
Focusing on a realistic ITLB sizes (e.g., 64 or 128 entries), we
measure that Qualcomm Server and SPEC workloads spend
on average 12.52% and 0.03% of their total execution cycles
serving instruction address translation, respectively. We ob-
serve such behavior because SPEC workloads have small
code footprints that generally fit in reasonable-sized ITLBs
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Figure 2. STLB MPKI for instruction references of theSPEC
2006, SPEC 2017, and Qualcomm Server workloads.

[80] while Qualcomm Server workloads spend a large frac-
tion of their cycles serving instruction address translation
due to their large code footprints; Figure 1 also shows that
an ITLB of more than 1024 entries is needed to minimize
the instruction address translation overheads of the Qual-
comm Server workloads. The main takeaway of this study is
that server workloads incur significantly higher instruction
translation costs than HPC and desktop workloads.

We complement the results of Figure 1 by quantifying the
STLBMPKI due to instruction accesses across the same set of
workloads used in Figure 1. This study considers a 64-entry
ITLB and a 1536-entry STLB (Section 5). Figure 2 shows that
the STLB MPKI for instructions is negligible for the SPEC
workloads since most of the instruction translations fit in
the ITLB, as indicated while explaining the results of Figure
1. In contrast, the STLB MPKI for instruction references is
up to 0.9 for the Qualcomm Server workloads, revealing that
these applications trigger a significant number of page walks
for instruction accesses, explaining why these applications
face significant instruction address translation overheads.

Finding 1. Applications with large code footprints amplify
the address translation overheads.

3.2 Prioritizing Instruction Translations in the STLB
Despite the substantial pressure on the virtual memory sub-
system stemming from the large instruction footprints of
server workloads, whichwill worsen significantly in the com-
ing years [40, 52, 61, 74], fundamental TLB design concepts
have been conceived taking into account the properties of
desktop and HPC workloads and thus neglect the impact of
instruction address translation on the system performance.
As a result, current STLB replacement policies do not differ-
entiate between data and instruction entries and they use
access recency to drive replacement decisions.

This section motivates the potential benefits of (i) making
the STLB replacement policies instruction-aware and (ii)
prioritizing instruction translations over data translations in
the STLB because instruction references are on the critical
path of the pipeline execution [61, 80], thus their latency
cost can be sometimes (partially) hidden.
To illustrate the potential improvements of prioritizing

instructions over data translation entries in the STLB, we

Processor vendors typically use an LRU variant as STLB replacement policy
[10, 66, 70], as explained in Section 2.3.
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Figure 3. IPC improvement when the STLB replacement pol-
icy prioritizes instruction translations over data translations
by a certain probability P.

consider several modified versions of the LRU replacement
policy.3 Specifically, these modified replacement policies de-
cide to evict an instruction STLB entry depending on a cer-
tain probability 𝑃 . For example, if 𝑃 = 0.8, the replacement
policy will decide to evict a data translation entry for 80% of
the evictions and an instruction entry for the other 20%. If
there are several data (instruction) translation entries in the
STLB, the modified LRU will evict the least recently used
data (instruction) translation. If only data (instruction) en-
tries are present in the STLB, the least recently used data
(instruction) translation will get evicted, independently from
the decision made based on the probability 𝑃 .
Figure 3 presents the performance comparison between

the different modified LRU policies that consider a probabil-
ity 𝑃 to decide whether to victimize a data or an instruction
translation entry in the STLB over a baseline that considers
LRU as STLB replacement policy. Section 5 describes the
methodology we use to generate the data shown in Figure 3.
We observe that the highest probabilities for keeping in-

struction translations in the STLB provide performance gains
over standard LRU. The opposite behavior is observed for
the lower probabilities since keeping data over instruction
translations in the STLB incurs performance degradation.
Regarding the SPEC workloads, our experiments indicate
that the modified LRU policies perform similar to standard
LRU since the instruction footprint of SPEC workloads fits in
the ITLB, thus STLB accommodates mostly data translations.
Figure 3 reveals that trading instruction for data entries

in the STLB brings performance benefits for applications
with large instruction footprints that exacerbate STLB pres-
sure, as it is the case for the Qualcomm Server workloads,
while applying the opposite strategy results in performance
slowdowns. This happens because instruction references are
on the critical path of pipeline execution, potentially caus-
ing pipeline stalls while data references partially hide their
latency costs thanks to out-of-order execution [61, 80].

Finding 2. Prioritizing instructions over data in the STLB can
provide significant performance enhancements for workloads
with large instruction footprints.

Finding 2 motivates our STLB replacement policy, pre-
sented in Section 4.1, that selectively trades instructions for
data in the STLB for big-code applications.
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3.3 Impact on the Cache Hierarchy of Prioritizing
Instructions in the STLB

Section 3.2 demonstrates that prioritizing instructions over
data in the STLB can provide great performance benefits.
However, doing so comes at the cost of increasing the number
of data page walks that would impact the locality of PTEs
stored in the cache hierarchy since page walks are served
via memory accesses. This section quantifies the impact of
prioritizing instructions over data in the STLB on the locality
of the different cache levels.
Figure 4 shows the MPKI breakdown for the L2C and

LLC when the STLB uses the LRU replacement policy and
the modified LRU replacement policy that favors keeping
instructions translations with 𝑃 = 0.8 probability across all
Qualcomm Server workloads. The MPKI breakdown consists
of four categories: (i) MPKI due to data accesses (dMPKI ),
(ii) MPKI due to instruction accesses (iMPKI ), (iii) MPKI
due to page walks triggered by data STLB misses (dtMPKI ),
i.e., memory requests looking for PTEs that contain data
translations, and (iv) MPKI due to instruction STLB misses
(itMPKI ). Figure 4 indicates that using an STLB replacement
policy that prioritizes instructions over data, increases the
number of misses due to page walk references triggered by
data STLB misses (dtMPKI ) with respect to LRU. This MPKI
increase in data page walk references has a negative impact
on the latency cost of data STLB misses.

Finding 3. Prioritizing instructions over data in the STLB
increases the cache misses triggered by page walks serving
data STLB misses.

Finding 3 motivates the cache replacement policy that we
propose in Section 4.2, which works cooperatively with the
new STLB replacement policy that we present in Section 4.1
and provides significant benefits when the cache hierarchy
faces a heavy load due to frequent data page walks.

4 Instruction-aware Cooperative
Cache/STLB Replacement Policies

This section proposes new replacement policies for the STLB
and the cache hierarchy that cooperatively accelerate server
applications. Section 4.1 presents the Instruction Translation

STLB
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Figure 5. Insertion (up) and promotion (down) policies of
iTP. Variables N and M represent distances from the top and
the bottom of the recency stack, respectively.

Prioritization (iTP), an instruction-aware STLB replacement
policy. Section 4.2 presents the extended Page Table Prior-
itization (xPTP), an L2C replacement policy that amplifies
the benefits of iTP. Section 4.3 describes the operation of a
system that incorporates both iTP and xPTP policies.

4.1 Instruction Translation Prioritization (iTP)
This section proposes the Instruction Translation Prioritiza-
tion (iTP), a new STLB replacement policy. iTP is motivated
by Finding 1 and Finding 2, presented in Sections 3.1 and 3.2,
respectively. These two findings reveal that workloads with
large instruction footprints suffer from remarkable instruc-
tion translation costs, and that prioritizing instruction trans-
lations over data translations in the STLB has the potential to
mitigate these costs. To address our analysis findings, the iTP
policy maximizes the number of instruction hits in the STLB
at the expense of increasing data STLB misses. The goal of
iTP is not to reduce the overall STLB MPKI but selectively
trade data translations for instruction translations to save
critical for performance instruction page walks.

iTP uses smart insertion and promotion policies that favor
keeping instruction translation PTEs at the top positions of
the STLB recency stack, which we assume to use the LRU
policy without loss of generality since vendors typically
use an LRU variant as STLB replacement policy (Section
2.3). The top of the LRU recency stack corresponds to the
most recently used entry while the bottom position of this
stack corresponds to the least recently used entry. We refer
to these positions as MRUpos and LRUpos, respectively. iTP
uses the same eviction policy as LRU -based policies, i.e., it
evicts the entry located at the LRU pos position. However, iTP
uses insertion and promotion policies that consider whether
STLB entries contain instruction or data translations, which
is a fundamental difference from other STLB replacement



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Dimitrios Chasapis, Georgios Vavouliotis, Daniel A. Jiménez, & Marc Casas

policies like LRU and CHiRP [55]. The implementation of iTP
requires two additional metadata fields per STLB entry. The
first field contains one bit annotating whether an entry stores
a data translation or an instruction translation; we refer to
this field as Type. The second field contains a frequency
counter that optimizes the insertion and promotion policies
of iTP ; we refer to this field as Freq.

Figure 5 shows the insertion and promotion policies of iTP
with a flowchart. The former takes place at the end of a page
walk when the requested translation needs to be inserted in
the STLB. The latter takes place upon STLB hits and moves
the hit entry to the appropriate position in the recency stack.

4.1.1 iTP Insertion Policy. iTP inserts the new entry in
the STLB by considering whether it contains a data or an
instruction PTE. iTP inserts data translation entries (Type=1)
at the LRUpos position 1 , thus this new entry has the highest
priority for eviction. If it is an instruction translation entry,
iTP inserts it at a high position in the recency stack, but not at
the MRUpos position. Instead, iTP places the new instruction
entry 𝑁 positions belowMRUpos 2 in the recency stack. The
rationale behind this decision is that the𝑀𝑅𝑈𝑝𝑜𝑠 is reserved
for instruction translation entries that are frequently refer-
enced. An entry can only reach the𝑀𝑅𝑈𝑝𝑜𝑠 position when
its Freq counter is saturated. For new instruction transla-
tion entries, the Freq counter is set to 0 3 . Once the new
entry is inserted, iTP updates the recency stack of all the
other entries by moving them down one position. This up-
date takes place for the insertion of both instruction or data
translations 4 . Thus, useless instruction translation entries
can reach the 𝐿𝑅𝑈𝑝𝑜𝑠 if they are not frequently accessed and
are eventually evicted from the STLB.

4.1.2 iTP Promotion Policy. iTP applies different pro-
motion policies for entries containing data or instruction
translations. If the hit entry contains an instruction transla-
tion (Type=0), iTP promotes it by considering the value of its
Freq counter. If this counter is not saturated, iTP moves the
hit entry to the same position as if it was a new instruction
translation entry, 𝑖 .𝑒 .,𝑀𝑅𝑈𝑝𝑜𝑠 −𝑁 i . If the Freq counter is
saturated, the entry is moved to 𝑀𝑅𝑈𝑝𝑜𝑠 ii . The intuition
behind this mechanism is that instruction translation entries
that experience high access frequency rates are more likely
to be useful in the future, thus iTP promotes them to the
𝑀𝑅𝑈𝑝𝑜𝑠 position. iTP increments the frequency of the hit
entry if it is not saturated iii . If the entry that produced the
hit contains a data translation, it is promoted 𝑀 positions
higher than 𝐿𝑅𝑈𝑝𝑜𝑠 iv . The new position can be expressed
with the following formula: 𝑒𝑝𝑜𝑠 = 𝐿𝑅𝑈𝑝𝑜𝑠 +𝑀 , where 𝑒𝑝𝑜𝑠 is
the new entry’s position and𝑀 is an integer number smaller
than the STLB associativity and larger than 𝑁 .

4.1.3 iTP’s Storage and Latency Overheads. The pro-
posed implementation of iTP requires 4 additional bits to be
stored per STLB entry: one bit for the Type field and 3 bits

Find LRU Victim

Find ALT_LRU Victim

ALT_LRUpos

>=
LRUpos + K

Select LRU Victim

Select ALT_LRU Victim

xPTP Replacement Policy

find LRU victim among all blocks
in the set excluding data PTEs

a

b
c d

Figure 6. Flowchart diagram depicting the xPTP replacement
policy. ALT_LRU victim refers to the block with the lowest
LRU value excluding blocks that accommodate data PTEs.

for the Freq field. For a 1536-entry STLB [10], iTP requires
768 bytes of extra storage. iTP does not increase the STLB
access latency with respect to LRU for STLBs with 1536 en-
tries or more. Regarding smaller STLBs, iTP may increase the
STLB access latency. Approaches keeping the Type and Freq
counters in a small hardware structure decoupled from the
STLB can reduce the STLB access latency with small energy
overheads. Finally, iTP requires one additional bit per STLB
MSHR entry to store the Type of the corresponding miss.
Having a 3-bit counter per STLB entry to store the Freq

field constitutes a similar overhead as other well-established
replacement approaches. For example, implementing a LRU
replacement for a 𝑁 -set associative cache would require
𝑁 · 𝑙𝑜𝑔(𝑁 ) bits per set. Since iTP requires 3 · 𝑁 bits per set,
LRU incurs the same overhead or more than having 3 bits per
entry when 𝑁 ≥ 8. Tree-base pseudo-LRU policies require
𝑂 (𝑛) bits per set for a 𝑁 -set associative cache, similar to iTP.

4.2 Extended Page Table Prioritization (xPTP)
The extended Page Table Prioritization (xPTP) is an L2C re-
placement policy that amplifies the benefits of iTP. The de-
sign of xPTP is motivated by Finding 3 of Section 3.3, showing
that when the STLB uses a replacement policy that priori-
tizes instruction entries over data entries (e.g., iTP or the one
evaluated in Figure 4), there is a notable increase in cache
misses triggered by data page walks. xPTP effectively miti-
gates the performance impact of memory accesses triggered
by page walks coming from data STLB misses. To do so, xPTP
requires an additional bit per L2C block to indicate whether
the block contains a data PTE or not. We refer to this bit as
Type, similarly to the one used for iTP. The insertion and
promotion policies of xPTP follow the LRU approach. The
only modification is that xPTP requires setting the Type bit
on insertion. The novel aspect of xPTP is its eviction policy
that favors keeping cache blocks containing data PTEs in the
cache hierarchy to accelerate data page walks and eventually
reduce the overheads of iTP that increases data STLB misses.

Figure 6 shows the xPTP eviction policy (assuming an L2C
miss). The initial step a identifies a potential victim block
by looking at the bottom of the recency stack. In parallel,
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Figure 7. Operation of a system that implements both iTP and xPTP replacement policies.

xPTP identifies an alternative victim which is the cache block
closest to the recency stack not accommodating a data PTE
b . We refer to this position as 𝐴𝐿𝑇_𝑉 𝐼𝐶𝑇 𝐼𝑀𝑝𝑜𝑠 . Step c
determines which cache block will be evicted by evaluating
the inequality 𝐴𝐿𝑇_𝑉 𝐼𝐶𝑇 𝐼𝑀𝑝𝑜𝑠 ≥ 𝐿𝑅𝑈𝑝𝑜𝑠 + 𝐾 , where 𝐾 is
an integer smaller than the cache associativity that indicates
below which position in the recency stack we consider an
entry to be a good candidate for eviction. The final step d
returns the position of the victim; 𝐿𝑅𝑈𝑝𝑜𝑠 if the inequality
holds or 𝐴𝐿𝑇_𝑉 𝐼𝐶𝑇 𝐼𝑀𝑝𝑜𝑠 otherwise.
The implementation of xPTP requires one additional bit

per L2C block and L2C MSHR entry to store the Type infor-
mation, which constitutes a negligible area overhead.

4.3 Combining iTP with xPTP (iTP+xPTP)
This section describes iTP+xPTP, a cooperative scheme that
uses iTP as STLB replacement policy and xPTP as L2C re-
placement policy. Figure 7 shows the operation of iTP+xPTP
in steps and the microarchitectural modifications required to
support its operation. First, iTP implies 4 additional bits per
STLB entry; 3 bits for the frequency counter (Freq) and 1
bit for the Type that specifies whether an STLB entry stores
a data or instruction translation, as Section 4.1 indicates.
Second, xPTP requires one additional Type bit per entry in
the L2C and L2C MSHR that specifies whether or not the
corresponding entry contains a data PTE or not.

An address translation request can either correspond to an
instruction fetch or a data access. The former/latter searches
the ITLB/DTLB for the requested translation. Upon DTLB
or ITLB misses, the STLB is looked up for possible hits. If
the STLB access is a hit, iTP applies its promotion policy
(Section 4.1.2) that takes into account the Type of the hit
entry to accordingly update the corresponding Freq value 1 .
Then, the processor replays the request. Upon STLB misses,
an STLB MSHR entry is primarily allocated. iTP augments
each STLB MSHR entry with one bit to annotate the Type of
the miss 2 ; Type is 0 (1) for instruction (data) STLB misses
2 . Then, the hardware page table walker is activated to fetch
the requested translation (for either data or instruction) from

the page table, potentially triggering multiple references to
the memory hierarchy (L2C, LLC, DRAM), as explained in
Section 2.1. For each page walk reference that misses in the
L2C, xPTP stores the Type bit in the allocated L2C MSHR
entry 3 ; Type is set to 0 (1) for page walk references serving
instruction (data) translation requests. Once a page walk
reference that misses in the L2C is served 3.1 , the Type bit is
written back to the corresponding L2C block. The Type bit is
set to one for blocks accommodating data address translation
entries. Following this operation, xPTP leverages the Type bit
in the L2C to drive its replacement decisions, as explained in
Section 4.2. Finally, at the end of the page walk the requested
translation needs to be inserted into the STLB coupled with
the corresponding Type bit that is stored in the STLB MSHR
4 . At this point, iTP takes as input the Type bit to drive the
insertion of the new entry, as explained in Section 4.1.1. We
refer to the design that combines iTP with xPTP as iTP+xPTP.

4.3.1 Phase Adaptability. xPTP accelerates data page
walks by favoring the placement of data PTEs in the L2C.
However, our analysis indicates that xPTP is beneficial for
performance during phases with high STLB pressure while
it may harm performance for phases with low STLB pres-
sure due to favoring data PTEs in the L2C. To address this
issue, we enhance iTP+xPTP with a dynamic mechanism
that enables xPTP during phases with high STLB pressure
while disabling xPTP for workloads with moderate memory
footprints that do not stress the TLB hierarchy.
We propose a mechanism that monitors the STLB MPKI

rates and, if the STLB MPKI surpasses a threshold (T1 in
Figure 7), it enables xPTP (step 5 in Figure 7). Otherwise,
standard LRU policy is used for the current access. Note
that xPTP degenerates to LRU if steps a , b , c , and d of
Figure 6 are omitted, thus there is no need to have a separate
implementation of the LRU policy. This selection scheme can
be implemented with two counters an a 1-bit status register.
The first counter accounts for the STLB misses, the second
counter accounts for the number of dynamic instructions
executed, and the 1-bit status register specifies which cache
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Table 1. System configuration.
CPU Core 4GHz, 352-entry ROB
Fetch Target Queue (FTQ) 128-entry
L1 ITLB 64-entry, 4-way, 1-cycle, 8-entry MSHR
L1 DTLB 64-entry, 4-way, 1-cycle, 8-entry MSHR

1536-entry, 12-way, 8-cycle,
L2 TLB 16-entry MSHR, 1 page walk / cycle

iTP: 3-bit Freq counter, 1-bit Type, N=4, M=8
5-level Split PSC, 2-cycle.

Page Structure Caches PSCL5: 2-entry, fully; PSCL4: 4-entry, fully
PSCL3: 8-entry, 2-way; PSCL2: 32-entry, 4-way.

L1I Cache 32KB, 8-way, 4-cycle, 8-entry MSHR, VIPT, FDiP

L1D Cache 32KB, 12-way, 5-cycle, 8-entry MSHR,
VIPT, Next-Line prefetcher

L2 Cache 512KB, 8-way, 5-cycle, 32-entry MSHR,
PIPT, Stride prefetcher, xPTP: 1-bit Type, K=8

LLC (per core) 2MB, 16-way, 10-cycle, 64-entry MSHR, PIPT
DRAM tRP=tRCD=tCAS=12, 12.8 GB/s
Branch Predictor hashed perceptron [76]

replacement policy is used for the L2C, either xPTP or LRU.
Initially, the two counters are set to zero. Once the counter
counting the executed dynamic instructions reaches 1000,
the misses counter is compared to 𝑇1, and the 1-bit status
register shifts to xPTP if themiss count exceeds𝑇1. Then, both
counters are set to zero and the process starts again. Previous
work indicates the feasibility of mechanisms driving the
cache replacement policies based on simple counters [63].

5 Experimental Setup
5.1 Evaluation Methodology
To evaluate our proposals, we use the ChampSim simulator
[2], a detailed trace-based simulator that models an out-of-
order processor and a three-level cache hierarchy with 64B
cache blocks. Our baseline implements a decoupled front-
end with a fetch width of 6 instructions, similar to prior
work [31]. We simulate a 5-level radix tree page table, an x86
hardware page table walker, and 4-level split Page Structure
Caches [64]. The simulated hardware page table walker can
support up to 4 concurrent page walks [20]. Note that en-
tries from all page table levels are stored in the cache hierar-
chy. Regarding hardware prefetching, our baseline considers
prefetchers for all L1D, L1I, and L2C. Table 1 describes the
simulated system configuration. Bold text highlights settings
that are relevant to iTP and xPTP policies. Parameters𝑀 , 𝑁 ,
and 𝐾 are determined via parameter space exploration and
we keep them constant for all our experiments. Our sensi-
tivity analysis indicates that different values of parameters
𝑀 and 𝑁 do not provide significant performance variation.
Parameter 𝐾 has the highest performance impact. We found
that values of parameter 𝐾 that place entries at the middle
of the stack (e.g. 𝐾=6, 𝐾=8) optimize the performance gains.

SMT Core.Workload co-location is a common practice in
servers since it offers better CPU andmemory utilization [78].
To evaluate our proposals under workload co-location, we ex-
tend ChampSim to simulate an SMT core with two hardware
threads, similar to prior work [80]. Regarding instruction
fetching, a basic block of instructions belonging to a thread

Table 2. List of considered techniques/policies and hardware
structures where they are applied.

Technique L1D L2 LLC STLB
TDRRIP [79] LRU TDRRIP LRU LRU
PTP [63] LRU PTP LRU LRU
CHiRP [55] LRU LRU LRU CHiRP
CHiRP+TDRRIP LRU TDRRIP LRU CHiRP
CHiRP+PTP LRU PTP LRU CHiRP
iTP (Sec. 4.1) LRU LRU LRU iTP
iTP+xPTP (Sec. 4.3) LRU xPTP/LRU LRU iTP
iTP+TDRRIP LRU TDRRIP LRU iTP
iTP+PTP LRU PTP LRU iTP
iTP with SHiP [84] LRU LRU SHiP iTP
iTP+xPTP with SHiP [84] LRU xPTP SHiP iTP
iTP with Mockingjay [71] LRU LRU Mockingjay iTP
iTP+xPTP with Mockingjay [71] LRU xPTP Mockingjay iTP

is fetched every cycle. We switch the thread we fetch from
every cycle. Our SMT model accounts for the contention in
all hardware structures shared among threads.

Simulated Page Sizes. Our evaluation considers two dif-
ferent scenarios: i) the system uses only 4KB pages for both
instructions and data (Sections 6.1, 6.2, 6.3) and ii) the system
uses both 4KB pages and 2MB pages for data and instructions
(Section 6.5). The scenario considering only 4KB pages is
relevant since huge pages require memory contiguity and
defragmentation to deliver competitive performance, which
cannot be guaranteed in server systems due to their large
uptimes [30, 56, 86]. In the multi-page size scenario we de-
termine the data footprint portion allocated by 2MB pages
using the methodology proposed by previous work [37, 82].

5.2 Workloads

Single ThreadWorkloads.Our set of single-thread work-
loads consists of server workloads provided by Qualcomm
[24] for the CVP-1 [1] and IPC-1 [9] contests. Prior works
on TLB-related optimizations [55, 80, 81] also use this set of
workloads. We consider workloads with an STLB MPKI of
at least 1.0. In total, our evaluation considers 120 single-core
server workloads. For simulation, we use 50 million warmup
instructions and 100 million instructions to measure the ex-
perimental results. We also consider the SPEC CPU 2006 [27]
and SPEC CPU 2017 [8] benchmark suites. We consider all
SPEC workloads in Section 3 to motivate our contributions.

SMT Workloads. To evaluate our proposals under work-
load colocation, we execute two different Qualcomm Server
workloads in our extended SMT ChampSim version, de-
scribed in Section 5.1. Our evaluation considers 75 chosen
pairs of Qualcomm Server workloads, combined in three cate-
gories: i) Intense Load: combines two randomly chosen work-
loads with high STLB MPKI (must be over 1.5), ii) Medium
Load: combines two randomly chosen workloads, one with
high and one with medium STLBMPKI, and iii) Relaxed Load:
combines two randomly chosen workloads, one with high
and one with low STLB MPKI. We use the same warmup and
simulation instructions as the single-core experiments.
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Figure 8. IPC comparison between state-of-the-art replacement policies and our proposals iTP and iTP+xPTP.

5.3 Considered Approaches
Our evaluation considers the most relevant state-of-the-art
cache and STLB replacement policies. Table 2 lists all the
considered policies and indicates the cache and TLB levels
where we apply them. If we do not specify a particular re-
placement policy for a structure, the default policy is LRU.
We consider two translation-aware cache replacement poli-
cies, PTP [63] and TDRRIP [79]. While the original versions
of these translation-aware policies guide both L2C and LLC,
we only use them on the L2C as our experiments indicate that
only using these policies in the L2C delivers better perfor-
mance for the Qualcomm Server workloads. We also consider
the state-of-the-art STLB replacement policy, CHiRP [55].
We combine CHiRP at the STLB with either TDRRIP and PTP
at the L2C, 𝑖 .𝑒 ., CHiRP+TDRRIP and CHiRP+PTP in Table 2.
In addition, our evaluation considers our proposals: iTP

(Section 4.1), iTP+xPTP (Section 4.3). We consider two addi-
tional policies, iTP+TDRRIP and iTP+PTP, where we combine
the use of iTP in the STLB with TDRRIP and PTP, respec-
tively, in the L2C. We evaluate iTP and iTP+xPTP considering
a system using the LRU replacement policy for LLC (Sec-
tions 6.1 and 6.2), and systems using the SHiP [84] andMock-
ingjay [71] policies to drive LLC replacement (Section 6.3).

6 Evaluation
This section presents our experimental campaign. Section
6.1 compares our proposals, iTP and iTP+xPTP, with state-of-
the-art replacement policies for L2C and STLB. Section 6.2
explains the performance gains of our proposals by quan-
tifying their impact on the different cache and TLB levels.
Section 6.3 evaluates our proposals when different state-
of-the-art LLC replacement policies are used. Section 6.5
presents evaluation when multiple page sizes are used.

6.1 Performance Evaluation Against State-of-the-Art
Figure 8 compares the performance of the iTP and iTP+xPTP
policies, presented in Section 4, with the state-of-the-art
STLB and L2C replacement policies, listed in Table 2, over a
baseline that uses the LRU replacement policy in all cache
and TLB levels. Figures 8a and 8b show results considering
one and two hardware threads, respectively. The x-axis of

both figures displays all considered policies while the y-axis
shows the Instructions Per Cycle (IPC) improvement over the
baseline. For each policy, we present a violin plot showing the
distribution of our results across all considered workloads.
The geomean IPC speedup is indicated with a black point.

Figure 8a presents the performance comparison across the
single-threadQualcomm Server workloads. iTP and iTP+xPTP
achieve geometric mean speedups of 2.2% and 18.9%, respec-
tively, with respect to LRU. PTP and TDRRIP yield speedups
of 7.1% and 9.3%, respectively. CHiRP achieves almost the
same performance as LRU. CHiRP does not differentiate be-
tween instruction and data PTEs in the STLB, thus its predic-
tion mechanism does not accurately identify highly reusable
entries, which makes CHiRP to apply a replacement logic
similar to LRU. Overall, iTP+xPTP provides the highest single-
core performance gains across all considered techniques.
Figure 8b shows results considering the two-thread sce-

nario, described in Section 5.2. iTP+xPTP achieves the highest
speedups. Specifically, iTP and iTP+xPTP achieve geomean
speedups of 0.3% and 11.4% over LRU, respectively. TDRRIP
achieves a geomean 8.5% improvement with respect to LRU,
while PTP provides very similar performance as LRU.

In both single- and two-thread scenarios we observe no-
table IPC uplifts when using iTP in the STLB. These gains
are greatly amplified when adopting the combined approach
of iTP+xPTP. Combining iTP with other state-of-the-art re-
placement policies that differentiate between translation and
application blocks in the L2C (iTP+TDRRIP, iTP+PTP) pro-
vides benefits over their respective counterpart without iTP
(TDRRIP, PTP). However, these policies deliver significantly
lower speedups than the proposed iTP+xPTP scheme.

6.2 Impact on the STLB and the Cache Hierarchy
This section explains the reasons why our proposals deliver
better performance than the state-of-the-art, as Section 6.1
indicates, by looking at the MPKI rates and miss latencies
experienced by the cache hierarchy and the STLB.

Figure 9a shows the average MPKI observed at STLB, L2C,
and LLC when applying the iTP and iTP+xPTP policies, pre-
sented in Section 4, as well as the state-of-the-art STLB and
L2C replacement policies listed in Table 2. Figure 9b shows
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Figure 9. MPKI (9a) and average miss latency (9b) at the STLB and the cache hierarchy.
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the impact on the average miss latency observed at STLB,
L2C, and LLC across the same policies as Figure 9a. Figure 9
presents results for both single- and two-thread scenarios in
the left- and right-hand side plots, respectively.

Regarding the single-thread scenario, iTP+xPTP provides
the highest IPC gains. Many aspects contribute to these gains.
The average STLB MPKI when using iTP+xPTP is reduced
from 1.8 to 1.6 (11.1% reduction) with respect to LRU while
the average STLB miss latency is reduced from 170.9 to 92.3
(45.9% reduction). We observe this behavior because iTP
prioritizes instructions over data in the STLB, thus trading
instruction page walks that can cause pipeline stalls for data
page walks that are quickly served from the cache hierarchy
since xPTP avoids evicting data PTEs from the L2C. Focusing
on the cache hierarchy, iTP+xPTP lowers the LLC MPKI rate
over LRU from 13.8 to 8.4 while increasing the L2CMPKI rate
over LRU from 30.6 to 46.5. Two factors compensate for this
L2C MPKI increase and explain the superior performance
of iTP+xPTP. First, when applying iTP+xPTP, the L2C MPKI
of cache blocks storing data PTEs decreases with respect
to LRU (from 1.0 to 0.4), which reduces the cost of page
walks triggered by data accesses. Second, iTP+xPTP delivers
the highest LLC MPKI reduction, which heavily reduces the
average L2C miss latency, as Figure 9b shows, since most
L2C misses are served by the LLC. Specifically, iTP+xPTP
reduces average L2C miss latency over LRU by 47.5%.
We observe similar behavior under thread co-location.

iTP+xPTP significantly lowers the STLB miss latency with
respect to LRU, similar to the single-thread scenario. Focus-
ing on the caches, iTP+xPTP lowers the LLC MPKI over LRU

from 29.6 to 24.6 while increasing the L2C MPKI over LRU
from 42.7 to 62.2. The L2C MPKI increase of iTP+xPTP is
compensated by an LLC MPKI much lower than the one
experienced by LRU, which reduces the average L2C miss la-
tency by 37.3%, as Figure 9b shows. TDRRIP and iTP+TDRIPP
experience larger MPKI rates than iTP+xPTP in both L2C
and LLC and, consequently, they deliver lower performance
than iTP+xPTP.
The xPTP replacement policy, which prioritizes blocks

containing data PTE entries in the L2C, is not conceived to
be used alone since just prioritizing cache blocks storing
PTEs provides low benefits. Instead, we combine the use of
xPTP in the L2C with iTP in the STLB. While iTP maximizes
the number of instruction hits in the STLB at the expense
of increasing data page walks, xPTP reduces the impact of
these additional data page walks by reducing L2C misses
due to data page walks. When combined with iTP, xPTP
dramatically reduces the average L2C miss latency and the
LLC miss count with respect to LRU for both single- and
two-hardware thread scenarios, as Figure 9a shows.
Figure 10 highlights the effectiveness of iTP on reducing

STLB instruction misses by showing a breakdown of the
average STLB MPKI for instructions and data corresponding
to the Qualcomm Server workloads. Figure 10 considers both
LRU and iTP for the single- and two-thread scenarios. The
main takeaway of this study is that instruction translation
MPKI (iMPKI ) experiences a significant reduction when iTP
is used as STLB replacement policy, while the data translation
MPKI (dMPKI ) suffers an increase.

6.3 Sensitivity to LLC Replacement
This section evaluates iTP and iTP+xPTP considering baseline
systems using the SHiP [84] and theMockingjay [71] policies
to drive LLC replacement; for completeness, we also report
the LRU results, similar to previous sections. Figure 11 shows
geometric mean speedups over a baseline where LRU is used
on STLB and L2C, but the corresponding LLC policy is used
for each respective LLC replacement scenario.
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Figure 11. IPC comparison between state-of-the-art replacement policies and our proposals iTP and iTP+xPTP.

Focusing on the single-thread scenario, Figure 11a demon-
strates that iTP delivers consistent performance gains across
all considered LLC replacement policies, i.e., its benefits are
independent from the underlying LLC replacement policy.
Specifically, iTP improves geomean performance by 2.2%,
2.3%, and 1.4% when LRU, SHiP, and Mockingjay operate in
the LLC, respectively. iTP+xPTP delivers great performance
uplifts when LRU and SHiP are used as LLC replacement
policies (18.9% and 15.8% respectively) and modest gains
(1.6%) when Mockingjay operates in the LLC. These moder-
ate gains whenMockingjay is used to drive LLC replacement
come from the fact that Mockingjay is less effective for the
Qualcomm Server workloads than replacement policies like
SHiP. Since Mockingjay was developed considering work-
loads with large data footprints and not applications with
both large code and data footprints, it delivers less perfor-
mance for server workloads than for desktop or HPC codes,
which reduces the benefits of our proposal. When consider-
ing two-thread workloads (Figure 11b), we observe trends
similar to the single-thread ones (Figure 11a).

6.4 Sensitivity to ITLB Size
Experimental results presented in previous sections assume
a 64-entry ITLB (Table 1). This section quantifies the perfor-
mance iTP and iTP+xPTP across different ITLB sizes. Figures
12a and 12b present the experimental results, for single- and
two-threads, respectively.
Focusing on realistic ITLB sizes (64 and 128 entries), we

observe geomean speedups ranging between 2.2-2.6% and 0.3-
0.8% when using iTP for the single- and two-thread scenarios,
respectively. iTP+xPTP yields a geomean speedup between
18.0-18.9% and 11.4-11.9% for the single- and two-thread sce-
narios, respectively. Overall, for ITLBs with less than 512 en-
tries, both iTP and iTP+xPTP consistently deliver significant
performance gains for both single- and two-threads evalu-
ation with small variation. However, for the single-thread

We use the source code ofMockingjay provided by its authors and apply it to
our experimental campaign. We verify that thisMockingjay implementation
delivers speedups similar to the ones reported in the original paper [71] and
that it outperforms SHiP for the SPEC workloads. The largest speedups we
observe are 31.0%, 9.8%, 2.4%, 1.9% and 1.7% for the 482.sphinx3, 462.libquan-
tum, 627.cam4, 403.gcc and 433.milc SPEC workloads, respectively.

scenario, when using an ITLB of 1024 entries we observe
that both iTP and iTP+xPTP deliver lower performance gains
than the scenarios with smaller ITLB sizes. Specifically, iTP
and iTP+xPTP improve geomean performance by 1.3% and
4.6% for single- and two-threads, respectively, assuming an
1024-entry ITLB. This behavior is expected since increasing
the ITLB size to 1024 entries reduces the instruction address
translation bottleneck, as Figure 1 indicates, because most
instruction translation requests are served now by the ITLB,
thus STLB accommodates less instruction PTEs, limiting the
potential of (i) iTP which targets to reduce the instruction
translation misses in STLB and (ii) xPTP which mitigates
the increase in data translation page walks caused by iTP to
optimize cache management; if iTP does not frequently evict
data PTEs to preserve instruction ones, then also xPTP has
minimal effect on performance. Regarding the two-thread
scenario, even with 1024-entry ITLB, there is still a signifi-
cant number of instruction misses in both ITLB and STLB to
highlight the benefits of our proposals.
The main takeaway of this study is that our proposals,

iTP and iTP+xPTP, deliver significant and consistent benefits
across different ITLB sizes while highlighting that can im-
prove performance even of future microarchitectural designs
with significantly bigger ITLBs than the ones used in today’s
designs (e.g., 64-128 entries).

6.5 Allocating Instructions and Data on Large Pages
This section evaluates our proposal with the highest per-
formance gains, iTP+xPTP, against TDRRIP, PTP, and CHiRP
considering a system that uses both 2MB and 4KB memory
pages to allocate data and instructions (Section 5.1). Figure 13
shows the geomean IPC uplifts with respect to LRU for all
considered approaches in both single- and two-hardware
thread scenarios. The x-axis shows the percentage of code
and data footprint allocated in 2MB pages.

For single-thread workloads, iTP+xPTP achieves 18.9% ge-
omean speedup when only 4KB pages are used, while SHiP,
PTP, and CHiRP deliver significantly lower performance than
iTP+xPTP in this scenario. When mapping 10% of the ap-
plication code and data to 2MB pages, iTP+xPTP delivers
a speedup of 10.1%, while the competing policies perform
much worse. When the portion of data and code footprint
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Figure 12. Performance of iTP and iTP+xPTP across different ITLB sizes.
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Figure 13. IPC comparison considering state-of-the-art re-
placement policies and iTP+xPTP using 4KB and 2MB pages.

allocated to 2MB pages is 50% or larger, all schemes pro-
vide negligible speedups over LRU since the vast majority
of STLB accesses (both data and instructions) are hits.
For the two-thread scenario, iTP+xPTP delivers perfor-

mance speedups of 11.4%, 8.4%, 5.9%, and 4.2%, when 0%, 10%,
20%, 100% of code and data are mapped to 2MB pages, respec-
tively, while TDRRIP delivers speedups of 8.2%, 5.4%, 2.2%
and 1.5% in these same scenarios. The speedups achieved by
iTP+xPTP are larger than the ones delivered by TDRRIP for
all multi-size page scenarios. PTP and CHiRP deliver worse
performance than iTP+xPTP and TDRRIP in all scenarios.

Figure 13 indicates the superior performance of iTP+xPTP
with respect to state-of-the-art schemes for all considered
multi-size page scenarios. In addition, Figure 13 indicates that
the benefits of all considered approaches, including iTP+xPTP,
decrease as the percentage of data and code footprint mapped
to 2MB increases. This effect comes from the fact that in-
creasing the code and data footprint mapped to 2MB pages
reduces STLB misses. Even when mapping 100% of the code
and data footprint to 2MB pages, iTP+xPTP brings a remark-
able speedup of 4.2% on the two-threads scenario.

6.6 Unified STLBs vs Split STLBs
Unified STLB designs imply that both instruction and data
translations are stored in the same STLB structure. Split
STLB designs implement separate STLB structures for data
and instruction translations. Unified STLBs face interference
between instruction and data translations while Split STLBs
typically incur storage waste for workloads with small code
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Figure 14. Comparison of Unified STLB with iTP+xPTP
against Split STLB for instructions and data.

footprints. iTP+xPTP improves the performance of Unified
STLBs, which is the TLB organization generally chosen by
vendors [3, 5, 6] due to their storage efficiency.

This section compares Unified STLBs and Split STLBs
with and without our proposal, iTP+xPTP. Specifically, we
compare a Unified STLB (1536- and 3072-entries) that uses
iTP+xPTP with (i) a 1536-entry Split STLB design (768-entry
data-STLB and 768-entry instruction-STLB) and (ii) a 3072-
entry Split STLB design (1536-entry data-STLB and 1536-
entry instruction-STLB). The results of Figure 14 are com-
puted over a baseline with a 1536-entry Unified STLB (Table
1), similar to all previous sections.

Figure 14 provides three main conclusions. First, we ob-
serve that a Split STLBwith the same number of entries as the
baseline Unified STLB is slightly behind in performance for
both single-thread and two-thread scenarios (2nd violin Fig-
ures 14 (a), (b)). Second, doubling the entries of the Split STLB
(1536-entry data-STLB and 1536-entry instruction-STLB, 4th
violin in Figures 14 (a), (b)) provides similar single-thread IPC
gains as the 1536-entry Unified STLB using iTP+xPTP. Note
that the former scenario requires maintaining two separate
STLBs for data and instructions (double storage overhead,
higher power) while the latter uses iTP+xPTP, which incurs
low storage overhead. Finally, although the 3072-entry Split
STLB provides slightly higher performance than the 1536-
entry Unified STLB with iTP+xPTP, the 3072-entry Unified
STLB with iTP+xPTP outperforms the 3072-entry Split STLB
for both single-thread and two-thread scenarios, further high-
lighting the benefits of iTP+xPTP.
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7 Related Work
Translation-Oblivious Cache Replacement Policies.

Prior work in translation-oblivious cache replacement poli-
cies, i.e., policies that do not differentiate between blocks
with instructions/data payload and blocks accommodating
PTEs, can be classified in two categories: i) memoryless re-
placement policies that use cache block recency to drive
replacement decision and do not use histories of previous
misses [26, 34, 50, 59, 67, 75, 83] and ii) predictive replace-
ment policies that predict the reuse distance of cache lines by
correlating program and system features with the behavior
of past accesses [21, 23, 28, 32, 35, 43, 44, 46, 51, 71, 72, 77, 85].
Our work takes a step forward since it improves the decision-
making of STLB and cache replacement policies in a three-
fold manner: i) it makes the STLB replacement policy aware
of whether an entry contains an instruction or data transla-
tion, ii) it makes the L2C replacement policy aware of the
existence of blocks accommodating data PTEs, and iii) cre-
ates synergy between STLB and cache replacement policies.

Instruction-Aware Cache Replacement Policies. Recent
works [33, 57] show that server and datacenter applications
spend a significant portion of their total execution cycles
serving code misses at the lower-level caches. CLIP [33]
builds on top of the RRIP policy [34] and uses Set-Dueling
[68] to increase the priority of code blocks in the L2C at the
expense of having more data misses when needed. In similar
spirit, Emissary [57] is another translation-oblivious L2C
replacement policy that avoids evicting critical for perfor-
mance code blocks. Our work is orthogonal to instruction-
aware L2C replacement policies since xPTP does not differ-
entiate between data and code blocks; xPTP gives higher
priority to L2C blocks containing data translations to com-
pensate for the extra data page walks introduced by iTP. A
scheme that leverages iTP as STLB replacement policy and
combine xPTP with Emissary at L2C has the potential to pro-
vide larger performance gains than iTP+xPTP since it would
preserve critical code blocks in the L2C thanks to Emissary.
Dead Block/Page Prediction. Dead block (page) predic-

tors anticipate whether a block (page) will be referenced
again before it is evicted by the corresponding cache (TLB)
structure. Although there are numerous dead block predic-
tors in recent literature [23, 44–46, 48, 49, 51], there has been
little attention paid to dead page prediction for TLBs. Mazum-
dar et al. [54] propose a cooperative scheme that is built on
the premise that dead blocks live in dead pages. Their pro-
posal consists of i) a dead page predictor for the STLB that
bypasses pages predicted to be dead and ii) a simple dead
block predictor for the LLC that exploits the propagated
dead page information to drive its prediction. Instead, we
make the STLB and cache replacement policies capable of
differentiating between data and instruction payload for ap-
plications with large data and code footprints. Dead page and
dead block prediction are complementary to our proposals.

TLB Management and Optimizations. Elnawawy et
al. [22] show that a few data pages of data-intensive appli-
cations have high reuse but poor temporal locality. They
propose a scheme that pins in the STLB highly used PTEs.
However, this approach needs to pin hundreds of instruc-
tion translations in the STLB to achieve significant perfor-
mance gains [81], which raises the STLBMPKI for data pages.
iTP optimizes the STLB replacement policy by prioritizing
the eviction of data translations over instruction transla-
tions when the STLB pressure for instructions is high. POM-
TLB [69] and DVMT [11] reduce page walks by maintaining
a large die-stacked L3 TLB, and allowing the application
to define the page table format, respectively. Victima [37]
increases TLB reach by using L2C as an additional TLB
level storing evicted STLB data entries. Hashed page tables
[29, 38, 73, 87] resolve TLB misses faster than radix tree page
tables. Our work is complimentary to these approaches.
Translation Prefetching. Prior work proposes STLB

prefetching schemes [17, 36, 80, 81]. iTP is orthogonal to
STLB prefetching and could be extended to consider STLB
prefetching in its decision-making.

8 Conclusions
This paper provides evidence that contemporary applications
with large instruction footprints face significant performance
degradation due to pipeline stalls caused by frequent TLB
misses. In response, we propose iTP, an STLB replacement
policy that smartly favors instruction translations over data
translations in the STLB, at the cost of increasing page walks
for data references. To address this issue we propose xPTP, an
L2C replacement policy that cooperates with iTP by favoring
data PTEs in the L2C to compensate for the increase in data
page walks incurred by iTP. Our experimental campaign
demonstrates that our proposals improve performance over
the state-of-the-art TLB and cache replacement policies in
both single- and two-hardware thread scenarios.
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A Artifact Appendix
A.1 Abstract
Our artifact provides (i) the implementation of iTP and xPTP,
(ii) the simulation infrastructure, (iii) the set of workloads,
(iv) scripts for launching simulations and scripts to reproduce
the most important figures.

A.2 Artifact check-list (meta-information)
• Program: Application traces of server applications pro-
vided by Qualcomm for CVP-1 [1] and IPC-1 [9] and
(optionally) traces of SPEC CPU 2006/2017 [7, 8].

• Compilation: gcc
• Metrics: Performance Improvement.
• Output: We provide scripts to recreate the most impor-
tant evaluation figures (Figures 8 and 9).

• Experiments: We provide scripts that submit the re-
quired jobs. The SLURM job manager is required.

• Howmuchdisk space required (approximately)?: 150MB
for the Simulation infrastructure and scripts. 40GB for
the Quacomm Sever traces and (optionally) 80GB for
SPEC CPU 2006/2017 traces.

• How much time is needed to prepare workflow (ap-
proximately)?: 20 minutes

• How much time is needed to complete experiments
(approximately)?: Single job should take about 30-40
minutes (or 8-12 hours if the batched versions is used).
Running all simulations for the most important data
should be complete within 24 hours. This can vary
depending on the hardware and SLURM configuration.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: No License (Champ-
Sim simulator is under Apache-2.0 license).

• Data licenses (if publicly available)?: No License
• Workflow framework used?: SLURM Job Manager.

A.3 Description
A.3.1 How to access. The source code, scripts and sim-
ulation infrastructure can be found in https://github.com/
dchasap/itp_asplos25_AE or https://doi.org/10.5281/zenodo.
14497052. The Qualcomm Server workload traces can be
found at The SPEC CPU 2006/2017 workload traces can be
found at https://doi.org/10.5281/zenodo.10959704 and https:
//doi.org/10.5281/zenodo.10960003, respectively.

A.3.2 Hardware dependencies. Any hardware capable
of compiling ChampSim [2].

A.3.3 Software dependencies. SLURM manager for job
management, python packages: zenodo_get, pandas, mat-
plotlib, seaborn and scipy.

A.3.4 Data sets. Qualcomm Server workload traces, (op-
tional) SPEC CPU 2006/2017 workload traces.

A.4 Installation
To deploy and setup the simulation infrastructure, follow
these steps:

• Clone the artifact repository for the scripts and simula-
tion infrastructure or download the tarball from from
https://doi.org/10.5281/zenodo.14497052. To clone the
repository run:
git clone https://github.com/dchasap/itp_asplos25_AE

• Install the python dependncies:
python3 -m pip install zenodo_get
python3 -m pip install scipy
python3 -m pip install pandas
python3 -m pip install seaborn

• Download the Qualcomm Server workload traces:
./download_traces.sh AE
The Qualcomm Server workload traces can also be
manually downloaded from https://doi.org/10.5281/
zenodo.14045185. There are two tar archives that need
to extracted in itp_asplos25_AE/traces/qualcomm_srv

• (Optional) Download the SPEC CPU 2006/2017 work-
load traces:
./download_traces.sh spec
The SPEC CPU 2006/2017 traces can also be manu-
ally from https://doi.org/10.5281/zenodo.10959704 and
https://doi.org/10.5281/zenodo.10960003. Both work-
loads need to be placed in itp_asplos25_AE/traces/spec
(The spec benchmarks are only needed to generate the
figures in the motivation Section).

A.5 Experiment workflow
To reproduce the most important experimental results from
Section 6 do the following:

• cd itp_asplos25_AE
• Check and edit SLURM’s directives if your setup re-
quires any special configuration to be set (e.g. queues,
account) in itp_asplos25_AE/scripts/submit_jobs.sh
and itp_asplos25_AE/scripts/submit_jobs_batch.sh

• source env.sh (sets the default paths and directories)
• ./submit_experiments.sh AE or ./submit_experiments_
batch.sh AE (Launches experiments)

The batched version significantly reduces the number of
jobs, but a single job takes substantially more time to execute.
The AE argument runs experiments for the most important
evaluation figures - if only a certain figure is needed use the
argument fig_XX, where XX the digits corresponding to the
figure number as numbered in the document. If all is pro-
vided as an argument, then all experiments from Sections 3
and 6 will be scheduled. This is not recommended as SLURM
queue limit will most likely be exceeded).

A.6 Evaluation and expected results
To validate the most important experimental results from
Section 6 follow these last steps:

• cd itp_asplos25_AE (if not there already)

https://github.com/dchasap/itp_asplos25_AE
https://github.com/dchasap/itp_asplos25_AE
https://doi.org/10.5281/zenodo.14497052
https://doi.org/10.5281/zenodo.14497052
https://doi.org/10.5281/zenodo.10959704
https://doi.org/10.5281/zenodo.10960003
https://doi.org/10.5281/zenodo.10960003
https://doi.org/10.5281/zenodo.14497052
https://github.com/dchasap/itp_asplos25_AE
https://doi.org/10.5281/zenodo.14045185
https://doi.org/10.5281/zenodo.14045185
https://doi.org/10.5281/zenodo.10959704
https://doi.org/10.5281/zenodo.10960003
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• source env.sh (reset the default paths and directories)
• ./gen_plots.sh AE (Parses experiment data and gener-
ates plots for the most important evaluation figures)

A single figure can be generated by replacing AE with
fig_XX. To generate all figures, use the all argument instead.
The generated data is placed in the itp_asplos25_AE/figures
directory. The generated figures can be either compared
directly with the ones presented in the document or the pre-
generated ones in itp_asplos25_AE/figures_PUBLISHED.)

A.7 Experiment customization
A.7.1 Adding benchmarks:

• Place your *.champsimtraces.xz in the traces directory,
in their own folder (e.g. ./traces/mybenchmarks).

• Create a bash script file (e.g. mybenchmarks.sh) and
place it in the scripts directory. This file should define
two variables, one for the directory name the traces
are in and one listing all the traces names. Review
qualcomm_srv_workloads.sh in the scripts directory
to see an example.

• Edit scripts/benchmarks.sh by adding at the top of the
script source ./scripts/mybenchmarks.sh and a corre-
sponding if-statement as following the example shown
in the file with the Qualcomm Server workloads. The
name you pick for the if-statement is going to be used
to identify the new benchmarks in all other scripts (e.g.
mybenchmarks).

A.7.2 Setting and running experiments:
• In the ChampSim direcotry edit the simulator configu-
ration file champsim_fdip_baseline.json. You can edit
prefetchers, replacement polcies and TLB and cache
sizes. This file is the base for all experiments.

• To create you own set of experiments copy one of
the bash scripts in exp_conf/fig_XX.sh. This file is
used as a configuration file by the job launching script.
Edit the variable BENCHSUITES, assigning the name
of the benchmark suite you want to use (e.g. BENCH-
SUITES=mybenchmarks). The variable CONFIGURA-
TION_TAGS needs to also be edited. This variable should
hold a list of the experiments to run. The experiment
names are parsed by ./scripts/gen_champsim_conf.py
to modify the baseline configuration. The naming con-
version follows the scheme:
cache_type-r.rep_pol-s.num_sets-w.num_ways.
For example if you want to just enable iTP and xPTP,
and change the size of the LLC, you can use:
stlb-r.itp_l2c-r.xptp_llc-s.1537-w.16.

• To launch the experiments run:
./scripts/submit_experiment.sh ./exp_conf/myexp.sh
Where ./exp_conf/myexp.sh is the bash scripts you
created in the previous step. The batched version can
./scripts/submit_experiment_batch.sh can also be used
in the same manner.

A.7.3 Parsing experiment data:
• To generate a CSV file with the experimental data
generated by the previous steps, run:
./scripts/parse_data.sh ./exp_conf/myexp.sh
The generated data is placed in ./stats/exp_name.csv.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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