
Exploiting Page Table Locality for Agile TLB Prefetching
Georgios Vavouliotis1,3, Lluc Alvarez1,3, Vasileios Karakostas4, Konstantinos Nikas4, Nectarios Koziris4, Daniel A. Jiménez2, and Marc Casas1,3

1Barcelona Supercomputing Center 2Texas A&M University 3Universitat Politècnica de Catalunya 4National Technical University of Athens

Exploiting Page Table Locality for Agile TLB Prefetching
Georgios Vavouliotis1,3, Lluc Alvarez1,3, Vasileios Karakostas4, Konstantinos Nikas4, Nectarios Koziris4, Daniel A. Jiménez2, and Marc Casas1,3

1Barcelona Supercomputing Center 2Texas A&M University 3Universitat Politècnica de Catalunya 4National Technical University of Athens

1. Virtual Memory

•Each memory access requires a virtual-to-physical address translation
•Modern systems implement virtual memory based on paging

Architectural Support for Paging-based Virtual Memory

•Page Table stores virtual-to-physical mappings of all pages loaded to
memory; x86 implements multi-level radix-tree Page Tables

•TLBs cache frequently used Page Table Entries (PTEs)
•MMU Caches store intermediate levels of the Page Table

3. Related Work
• SW/HW schemes that increase TLB reach [1]
•Approaches that accelerate TLB misses [2]
• Prefetching schemes that eliminate TLB misses [3]

Our Objective → TLB Prefetching

•Prefetch PTEs into a Prefetch Queue (PQ) ahead of demand accesses
V@ L1

TLB STLB PQ Demand
Page Walk

store to TLB to cpu

to cpu Prefetch
Page WalkPQ

Prefetch
Logic store to PQ

M M

H H
enable

.

... ... ...

H

.

M

M

discard

H

prefetch

.

4. Agile TLB Prefetcher (ATP)
Analysis Findings

•Different TLB prefetchers perform best for different type of workloads
•TLB prefetching is not helpful during all execution phases

ATP’s Design & Operation

•Combines three low-cost TLB prefetchers
– Stride TLB Prefetcher (STP) → statically uses strides ±1, ±2
–Modified Arbitrary Stride TLB Prefetcher (MASP) → table-based
prefetcher that correlates patterns with the PC

–H2 Prefetcher (H2P) → stateless distance-based prefetcher [3]
•One Fake Prefetch Queue (FPQ) per constituent prefetcher
• Selection and throttling logic implemented with saturating counters
• Single PQ that stores the prefetched PTEs (shared among prefetchers)

P0's FPQ

.V@

M/H

. P
Q.

.

.

.

C0

C1D

C2

P2

P0

P1

M/H

M/H

P1's FPQ

P2's FPQ

P0: H2P          P1: MASP            P2: STP            D: disable prefetching

Update FPQs
of PO, P1, P2 

Update
C0, C1, C2

C0

A
T

P
 M

od
ul

e

P0 FPQ

C1

C2

PQ

P1 FPQ

P2 FPQ

2. x86 Page Table Walking

0xA0
0xA0

PML4 PDP PD PT Page SE

0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7

cache line size = 64 bytes 

64
 b

yt
es

PML4E

PTE of 0XA0
PTE of 0XA1
PTE of 0XA2
PTE of 0XA3
PTE of 0XA4
PTE of 0XA5
PTE of 0XA6
PTE of 0XA7

PTE of
0xA0

PTE of
0xA1

PTE of
0xA2

PTE of
0xA3

PTE of
0xA4

PTE of
0xA5

PTE of
0xA6

PTE of
0xA7

CR3

LLC
L1C

offset offset offset offset offset 

PDPE
PDE

L2C

Address Translation Bottleneck
•TLB misses cause long-latency page walks
• Frequent TLB misses deteriorate system’s
performance

• Increase in applications’ working set sizes
outpaces the increase in TLB sizes

•Workloads with massive data footprints ex-
acerbate TLB pressure

Page Table Locality & Free TLB Prefetching
•After a page walk the requested PTE coupled with 7 “free” PTEs are stored into a single cache line
•The cache-line adjacent PTEs can be prefetched for “free”, without additional memory operations

5. Sampling-based Free TLB Prefetching (SBFP)
SBFP’s Design & Operation

• Free distance → distance between the PTE that holds the de-
mand translation and a “free” PTE within the cache line
–Possible free distances: from -7 to +7, excluding zero

•Sampler → buffer that examines the usefulness of free dis-
tances which were useless in previous execution phases

•PQ → buffer that stores only the useful “free” PTEs per page
walk (demand or prefetch)

• FreeDistance Table (FDT)→table composed of 14 saturating
counters (one per possible free distance) that decides whether
to place a “free” PTE into the PQ or into the Sampler

pte of
0xA0

C-6 C-4 C-3 C-2 C+1 C+3 C+6C-7 C-5 C-1 C+2 C+4 C+5 C+7

0

virtual physical
page page

free
distance

0xA6 +3

0xA1
0xA2 -1

-2 +1
+2
-3

virtual
page

free
distance

+4

>T >T >T >T >T >T >T

FDT

0 0 0 0 0 0

1111111

0xA4

0xA0
0xA7

0xA5
0xE1
0xE2

0xE6

SamplerPQ

pte of
0xA1

pte of
0xA2

pte of
0xA4

pte of
0xA5

pte of
0xA6

pte of
0xA7

pte of
0xA3 free distance = +4free distance = -3

Analysis Findings
•Exploiting page table locality for
TLB prefetching has the potential
to improve performance

•Exploiting page table locality for
TLB prefetching reduces the page
walk references to the memory hi-
erarchy (L1C, L2C, LLC, DRAM)

•Prefetching all “free” PTEs per
page walk provides suboptimal
performance benefits

Key Properties

• SBFP can be combined with any
TLB prefetching scheme without
modifications

• SBFP can operate on both demand
and prefetch page walks

• SBFP reduces the negative impact
of prefetch pagewalks onmemory
references

6. Methodology

•ChampSim simulator (L2-TLB: 1536 entries, LLC: 2MB, DRAM: 4GB)
•The baseline system does not have prefetching at any TLB level
•Workloads: 12 SPEC CPU 2006 & 2017, 11 GAP, 2 XSBench, and 125 Qualcomm traces from the first
Championship Value Prediction. We refer to GAP and XSBenchworkloads as Big Data (BD)workloads

Evaluated TLB Prefetchers
• SP [3] •DP [3] •ASP [3] • STP •H2P •MASP •ATP

7. Evaluation
•Compare SBFP with scenarios that exploit page table locality
– Free prefetching is not exploited (NoFP)
–All “free” prefetches are placed in the PQ (NaiveFP)
–Each prefetcher uses its own optimal set of free distances based on static
offline exploration (StaticFP)

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

0
2
4
6
8

10
12
14
16
18

%
 
sp

e
e
d
u
p

NoFP NaiveFP StaticFP SBFP

SP DP ASP STP H2P MASP ATP

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

0
50

100
150
200
250
300
350

%
 

n
o
rm

a
liz

e
d

m
e
m

o
ry

 r
e
fe

re
n
ce

s

SP DP ASP STP H2P MASP ATP

NoFP NaiveFP StaticFP SBFP

•NaiveFP, StaticFP, and SBFP experience higher performance gains and less
memory references due to page walks than NoFP for all prefetchers
– Free prefetching provides PQ hits that reduce demand page walks
– Free prefetching saves costly prefetch page walks

•ATP+SBFP outperforms the best prior TLB prefetcher by 8.7%, 3.4%, and
4.2% for the QMM, SPEC, and BD workloads, respectively

•ATP with SBFP eliminates by 37%, 26%, and 5% the page walk memory
references for the QMM, SPEC, and BD workloads, respectively

QMM SPEC BD0
5

10
15
20
25

%
 sp

ee
du

p

ISO-Storage ASAP ATP+SBFP ATP+SBFP+ASAP

•ATP+SBFP outperforms the
ISO-Storage scenario

•ASAP [4] improves the per-
formance of ATP+SBFP

[1] Pham et al., "CoLT: Coalesced Large-Reach TLBs", HPCA’12
[2] Bhattacharjee, "Large-reach memory management unit caches", MICRO’13
[3] Kandiraju et al., "Going the Distance for TLB Prefetching: An Application-driven Study", ISCA’02
[4] Margaritov et al., “Prefetched Address Translation”, MICRO’19

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 955606.

8. Follow-up Work
Morrigan: A Composite Instruction TLB Prefetcher – MICRO’21

Instruction TLB prefetching for big code applications


