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1. Virtual Memory

•Each memory access requires a virtual-to-physical address translation
•Modern systems implement virtual memory based on paging

Architectural Support for Paging-based Virtual Memory

•Page Table stores virtual-to-physical mappings of all pages loaded to
memory; x86 implements multi-level radix-tree Page Tables

•TLBs cache frequently used Page Table Entries (PTEs)
•MMU Caches store intermediate levels of the Page Table

3. Related Work
• SW/HW schemes that increase TLB reach [1]
•Approaches that accelerate TLB misses [2]
• Prefetching schemes that eliminate TLB misses [3]

Our Objective → TLB Prefetching

•Prefetch PTEs into a Prefetch Queue (PQ) ahead of demand accesses
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4. Agile TLB Prefetcher (ATP)
Analysis Findings

•Different TLB prefetchers perform best for different type of workloads
•TLB prefetching is not helpful during all execution phases

ATP’s Design & Operation

•Combines three low-cost TLB prefetchers
– Stride TLB Prefetcher (STP) → statically uses strides ±1, ±2
–Modified Arbitrary Stride TLB Prefetcher (MASP) → table-based
prefetcher that correlates patterns with the PC

–H2 Prefetcher (H2P) → stateless distance-based prefetcher [3]
•One Fake Prefetch Queue (FPQ) per constituent prefetcher
• Selection and throttling logic implemented with saturating counters
• Single PQ that stores the prefetched PTEs (shared among prefetchers)
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2. x86 Page Table Walking

0xA0
0xA0

PML4 PDP PD PT Page SE

0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7

cache line size = 64 bytes 

64
 b

yt
es

PML4E

PTE of 0XA0
PTE of 0XA1
PTE of 0XA2
PTE of 0XA3
PTE of 0XA4
PTE of 0XA5
PTE of 0XA6
PTE of 0XA7

PTE of
0xA0

PTE of
0xA1

PTE of
0xA2

PTE of
0xA3

PTE of
0xA4

PTE of
0xA5

PTE of
0xA6

PTE of
0xA7

CR3

LLC
L1C

offset offset offset offset offset 

PDPE
PDE

L2C

Address Translation Bottleneck
•TLB misses cause long-latency page walks
• Frequent TLB misses deteriorate system’s
performance

• Increase in applications’ working set sizes
outpaces the increase in TLB sizes

•Workloads with massive data footprints ex-
acerbate TLB pressure

Page Table Locality & Free TLB Prefetching
•After a page walk the requested PTE coupled with 7 “free” PTEs are stored into a single cache line
•The cache-line adjacent PTEs can be prefetched for “free”, without additional memory operations

5. Sampling-based Free TLB Prefetching (SBFP)
SBFP’s Design & Operation

• Free distance → distance between the PTE that holds the de-
mand translation and a “free” PTE within the cache line
–Possible free distances: from -7 to +7, excluding zero

•Sampler → buffer that examines the usefulness of free dis-
tances which were useless in previous execution phases

•PQ → buffer that stores only the useful “free” PTEs per page
walk (demand or prefetch)

• FreeDistance Table (FDT)→table composed of 14 saturating
counters (one per possible free distance) that decides whether
to place a “free” PTE into the PQ or into the Sampler
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Analysis Findings
•Exploiting page table locality for
TLB prefetching has the potential
to improve performance

•Exploiting page table locality for
TLB prefetching reduces the page
walk references to the memory hi-
erarchy (L1C, L2C, LLC, DRAM)

•Prefetching all “free” PTEs per
page walk provides suboptimal
performance benefits

Key Properties

• SBFP can be combined with any
TLB prefetching scheme without
modifications

• SBFP can operate on both demand
and prefetch page walks

• SBFP reduces the negative impact
of prefetch pagewalks onmemory
references

6. Methodology

•ChampSim simulator (L2-TLB: 1536 entries, LLC: 2MB, DRAM: 4GB)
•The baseline system does not have prefetching at any TLB level
•Workloads: 12 SPEC CPU 2006 & 2017, 11 GAP, 2 XSBench, and 125 Qualcomm traces from the first
Championship Value Prediction. We refer to GAP and XSBenchworkloads as Big Data (BD)workloads

Evaluated TLB Prefetchers
• SP [3] •DP [3] •ASP [3] • STP •H2P •MASP •ATP

7. Evaluation
•Compare SBFP with scenarios that exploit page table locality
– Free prefetching is not exploited (NoFP)
–All “free” prefetches are placed in the PQ (NaiveFP)
–Each prefetcher uses its own optimal set of free distances based on static
offline exploration (StaticFP)
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•NaiveFP, StaticFP, and SBFP experience higher performance gains and less
memory references due to page walks than NoFP for all prefetchers
– Free prefetching provides PQ hits that reduce demand page walks
– Free prefetching saves costly prefetch page walks

•ATP+SBFP outperforms the best prior TLB prefetcher by 8.7%, 3.4%, and
4.2% for the QMM, SPEC, and BD workloads, respectively

•ATP with SBFP eliminates by 37%, 26%, and 5% the page walk memory
references for the QMM, SPEC, and BD workloads, respectively
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•ATP+SBFP outperforms the
ISO-Storage scenario

•ASAP [4] improves the per-
formance of ATP+SBFP
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8. Follow-up Work
Morrigan: A Composite Instruction TLB Prefetcher – MICRO’21

Instruction TLB prefetching for big code applications


