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Abstract

Despite groundbreaking technological innovations, the disparity between processor and
memory speeds (known as Memory Wall) is still a major performance obstacle for modern
systems. Hardware prefetching is a latency-tolerance technique that has proven successful
at shrinking this bottleneck. Nearly all real-world µarchitectural designs employ various
prefetchers. Consequently, hardware prefetching attracts a lot of research attention.

Virtual memory has been vital for the success of computing due to its programmability and
security benefits. However, virtual memory does not come for free since each memory ac-
cess requires a translation from the virtual to the physical address space that incurs high
latency and energy overheads. To alleviate these overheads, a hardware cache, named
Translation Lookaside Buffer (TLB), is typically employed to store the most recently used
translations. However, TLBs are limited in capacity, thus there are not adequate for assuring
high performance. Processor vendors address the need for fast address translation by pro-
viding dedicated support for virtual memory (e.g., multi-level TLBs, multiple page sizes).
Despite the existence of such support, the advent of applications with large data and code
footprints aggravates the pressure placed on the virtual memory subsystem, resulting in
frequent page walks that deteriorate system performance.

This dissertation argues that hardware prefetching can attenuate the Memory Wall bottle-
neck in virtual memory systems. To support our claim, we design and propose fully-legacy
preserving TLB prefetching schemes and exploit address translation metadata that are avail-
able at the µarchitecture to improve the effectiveness of the prefetchers operating in the
physical address space.

To reduce the overheads of frequent TLB misses due to data accesses, we propose a solution
that consists of the Sampling-Based Free TLB Prefetching (SBFP) scheme and the Agile TLB
Prefetcher (ATP). SBFP exploits the locality in the last level of the page table to enhance the
performance of TLB prefetching. ATP combines three prefetch engines while disabling TLB
prefetching during phases that does not provide benefits. Across different benchmark suites,
we show that ATP combined with SBFP improves performance over the best-performing
prior TLB prefetcher while reducing the page walk references to the memory hierarchy.

Next, we argue that instruction address translation is an emerging bottleneck in servers.
To support our claim, we characterize the TLB behavior of server workloads and provide
evidence that instruction address translation is a bottleneck in servers. To attenuate this

ix



Short Abstract

bottleneck, we propose Morrigan, the first instruction TLB prefetcher. Morrigan combines a
sequential prefetcher with an ensemble of hardware Markov prefetchers that build variable
length Markov chains out of the instruction TLB miss stream while using a new frequency-
based replacement policy. Across a set of industrial server workloads, Morrigan provides
great performance gains while eliminating the majority of the demand page walks for in-
struction accesses.

Our last contribution improves the efficacy of cache prefetchers operating in the physical
address space by exploiting modern support for large pages. We propose the Page-size Prop-
agation Module (PPM), a µarchitectural scheme that transmits the page size information to
the lower-level cache prefetchers and enables safe prefetching beyond 4KB physical page
boundaries. We further design a module comprised of two prefetchers that both exploit PPM
but drive prefetching decisions assuming different page sizes. Our experiments reveal that
the proposed page size exploitation techniques provide great performance enhancements
on various state-of-the-art cache prefetchers.

The proposals of this dissertation are fully legacy-preserving, do not call for disruptive
changes, do not require any OS involvement, and constitute practical solutions to real-
world bottlenecks.
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Extended Abstract

Despite groundbreaking technological innovations and revolutions, the discrepancy be-
tween processor and main memory speeds is still a major performance obstacle for modern
systems and is widely known as the Memory Wall. Hardware prefetching is a latency-
tolerance technique that aims at attenuating the Memory Wall bottleneck. The core idea be-
hind hardware prefetching is to proactively fetch memory blocks into the on-chip caches be-
fore they are explicitly demanded by a core, giving the illusion to the application that mem-
ory accesses need a few cycles to complete. Hardware prefetching has proven successful at
shrinking the processor-memory performance gap and nearly all real-world µarchitectural
designs employ various hardware prefetchers for the different cache levels. However, state-
of-the-art designs of hardware prefetchers are far from approaching the performance of an
ideal prefetcher. As a result, hardware prefetching attracts a lot of research attention since
it has the potential to provide outstanding performance and energy enhancements without
disrupting the existing memory subsystem. Indeed, there are myriads of hardware prefetch-
ers with different properties proposed in recent literature.

Virtual memory is a memory management technique that has been vital for the success of
computing due to its unique programmability and security benefits. Nearly all modern com-
puting systems today, from desktops to servers and datacenters, implement virtual memory
while programmers do not even think about the existence of virtual memory when writing
code today. However, virtual memory does not come for free. In virtual memory systems,
memory accesses are performed using virtual addresses, thus a memory access requires a
translation from the virtual address space to the physical address space that incurs high
latency and energy overheads. To alleviate the address translation overheads, a hardware
cache, named Translation Lookaside Buffer (TLB), is typically employed to store the most
recently used address translation entries. TLBs are placed close to the core to ensure fast
address translation upon memory accesses. However, TLBs are limited in capacity, thus
there are not adequate for assuring high-performance address translation. Leading proces-
sor vendors address the need for fast address translation by providing dedicated hardware
and software support to improve the performance of the virtual memory subsystem; from
multi-level TLB hierarchies to hardware page table walkers and multiple page sizes, among
others. Despite the existence of sophisticated architectural support for address transla-
tion, the advent of applications with large data and code footprints aggravates the pressure
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placed on the virtual memory subsystem, resulting in frequent page walks for both data
and instruction accesses that deteriorate the performance of the system.

Virtual memory makes the Memory Wall ‘taller’ due to the requirement of traversing the
memory hierarchy multiple times per TLB miss to obtain the requested address transla-
tion from the page table. To make matters worse, the advent of emerging workloads with
massive data and code footprints that experience high TLB miss rates, place tremendous
pressure on the memory hierarchy due to need for frequently performing page walks, threat-
ening the performance of computing.

In this dissertation, we argue that sophisticated hardware prefetching has the potential to
attenuate the Memory Wall bottleneck in virtual memory systems. In this direction, we (i)
design and propose fully-legacy preserving hardware prefetching schemes for the TLB hier-
archy that aim at reducing the TLB miss rates of both data and instruction references, and
(ii) exploit address translation metadata that are available at the µarchitecture to improve
the effectiveness of any hardware cache prefetcher operating in the physical address space
without opening new security vulnerabilities.

To reduce the performance overheads of frequent TLB misses due to data accesses, we focus
on hardware TLB prefetching because it is an approach that relies only on the memory ac-
cess patterns of the application, is independent of the system state, and does not imply any
OS involvement. We propose a composite solution that consists of the Sampling-Based Free
TLB Prefetching (SBFP) scheme and the Agile TLB Prefetcher (ATP). SBFP is a µarchitectural
scheme that exploits the locality in the last level of the radix tree page table to enhance
the performance of TLB prefetching while reducing the memory footprint of page walks
and the energy consumption of address translation. ATP is a composite TLB prefetcher that
efficiently combines three easily implementable prefetch engines by leveraging an adaptive
selection scheme while disabling TLB prefetching during phases that does not provide ben-
efits. Across a set of 150 workloads spanning different academic and industrial benchmark
suites, we demonstrate that our proposal, ATP combined with SBFP, significantly improves
geometric mean performance over the best-performing prior TLB prefetcher while signifi-
cantly reducing the page walk references to the memory hierarchy and the dynamic energy
consumption of address translation, at a cost of only 2KB of storage.

Next, we focus on the domain of address translation associated with instruction references
where we argue that instruction address translation is an emerging performance bottleneck
in servers and datacenters. To support our claim, we provide the first ever µarchitectural
study that (i) characterizes the TLB behavior of industrial server workloads, and (ii) pro-
vides evidence that instruction address translation is a performance bottleneck in servers.
To attenuate the instruction address translation bottleneck of big code applications, we
design and propose Morrigan, the first ever hardware TLB prefetcher for instruction ac-
cesses. Morrigan is a fully legacy-preserving prefetcher that consists of two complementary
prefetch engines capable of capturing both regular and irregular instruction TLB miss pat-
terns: (i) the Irregular Instruction TLB Prefetcher (IRIP) which is an ensemble of hardware
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Markov prefetchers that dynamically build variable length Markov chains out of the instruc-
tion TLB miss stream while using a novel frequency-based replacement policy, and (ii) the
Small Delta Prefetcher (SDP) which is a simple sequential TLB prefetcher that is activated
only when the IRIP module fails at producing prefetch requests. Across 45 industrial server
workloads, Morrigan improves geometric mean performance by 7.6% while eliminating
69% of the demand page walks, at the cost of 3.7KB of storage.

Our last contribution improves the efficacy of cache prefetchers operating in the physical
address space by exploiting modern prevalence and support for large pages, i.e., page sizes
larger than standard 4KB pages. We design and propose the Page-size Propagation Mod-
ule (PPM), a µarchitectural scheme that efficiently propagates the page size information to
the lower-level cache prefetchers and enables safe prefetching beyond 4KB physical page
boundaries when the accessed block resides in a large page, at the cost of augmenting the
MSHRs of the first-level caches with one bit. In addition, we demonstrate that PPM does
not introduce security vulnerabilities. To capitalize on PPM’s benefits, we design a compos-
ite module comprised of two cache prefetchers that both exploit PPM but drive prefetching
decisions assuming different page sizes. This composite prefetching module uses adaptive
selection logic to dynamically switch between the two page size aware prefetchers and is
transparent to which cache prefetcher is used. Our experimental campaign reveals that
the proposed page size exploitation techniques provide significant performance enhance-
ments on various state-of-the-art lower-level cache prefetchers (up to 8.1% geometric mean
speedup over the original version of the prefetchers) while not harming the performance
of non memory-intensive workloads, at modest storage overheads.

This dissertation demonstrates that (i) hardware TLB prefetching is a promising solution
for the address translation bottleneck for both data and instruction references, (ii) instruc-
tion address translation is an emerging problem in servers, and (iii) exploiting the pres-
ence of large pages in modern systems for improving the performance of hardware cache
prefetching provides significant benefits. All the proposals of this dissertation are fully
legacy-preserving, do not call for disruptive changes, do not require any OS involvement,
and constitute practical solutions to real-world bottlenecks since they incur minimal storage
overheads. Consequently, they have great potential to influence future industrial designs
and initiate additional research on hardware prefetching for virtual memory systems.
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Thesis Organization

This doctoral dissertation is divided into eight chapters following the subsequent structure.

Chapter 1 introduces the Memory Wall bottleneck, the fundamental idea behind hardware
prefetching, and basic as well as advanced concepts of virtual memory. Then, it motivates
the need for improving hardware prefetching for virtual memory systems and presents the
main contributions of this doctoral thesis.

Chapter 2 provides additional background on Memory Wall, hardware prefetching, and
architectural support for address translation. Furthermore, it provides all the necessary
information about hardware prefetching applied for the virtual memory subsystem while
presenting important features that virtual memory brings to hardware cache prefetching.

Chapter 3 presents the Agile TLB Prefetcher (ATP) and the Sampling-Based Free TLB Prefetch-
ing (SBFP), two µarchitectural modules capable of accelerating address translation associ-
ated with data accesses. This chapter is based on our work published in the 48th Interna-
tional Symposium on Computer Architecture (ISCA 2021) [284].

Chapter 4 presents Morrigan, the first ever µarchitectural TLB prefetcher for instruction
references that targets server applications with big code footprints. This chapter is based
on our work published in the 54th International Symposium on Microarchitecture (MICRO
2021) [283].

Chapter 5 presents Page Size Aware Cache Prefetching, the first work that enables safe cache
prefetching beyond 4KB physical page boundaries while revealing how address translation
metadata could be effectively leveraged for improving cache prefetching performance. This
chapter is based on our work published in the 55th International Symposium on Microar-
chitecture (MICRO 2022) [285].

Chapters 3, 4, and 5 also suggest various future research directions in their domain.

Chapter 6 summarizes the contributions of this doctoral thesis while discussing its broader
impact and acknowledging its main supporters.
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Chapter 7 presents a list of publications that have been accepted in peer-reviewed confer-
ences and journals as well as ongoing works and collaborations.

Chapter 8 illustrates the author’s vision for future research.
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1
Introduction

1.1 Memory Wall

Processor performance has featured exponential increase due to groundbreaking innova-

tions realized in domains like µarchitecture, circuits, and fabrication technologies through-

out the past five decades [114]. However, this is not the case for main memory speeds,

which have experienced only nominal improvements over this period [215]. This disparity

between processor and main memory speeds significantly limits systems’ performance and

it is widely known as the Memory Wall [193, 295].

To attenuate the Memory Wall bottleneck, computer architects primarily implemented

a hierarchy of cache memories that trade off capacity for speed; caches closer to a core

are smaller but faster than the ones closer to main memory [148]. Cache structures ac-

commodate program data and instructions (i.e., memory blocks) in the hope that they will

be requested again in the near future. The rationale behind the integration of cache hier-

archies into real-world designs is that storing the most recently used memory blocks into

small and fast structures would avoid long-latency main memory accesses upon requests
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1. INTRODUCTION

for these memory blocks, giving the illusion to the application that main memory accesses

require only a few cycles to complete. The concept of caching relies on two types of mem-

ory reference locality [215]; spatial locality and temporal locality. The former refers to the

similarity of access patterns across different memory regions while the latter assumes that

there will be a replay of memory accesses in the near future.

Although on-chip cache hierarchies bring significant performance enhancements, espe-

cially for workloads exhibiting good locality and regular access patterns, they are incapable

of eliminating the Memory Wall bottleneck because they are limited in capacity due to the

overhead of implementing large SRAMs near cores. Consequently, computer architects em-

ploy additional latency-tolerance techniques (e.g., instruction level parallelism, out-of-order

execution, and speculative execution among others) to alleviate this bottleneck.

1.2 Hardware Prefetching: Endless Opportunity Domain

One latency-tolerance technique that computer architects widely apply to hide the latency

cost of memory accesses is hardware prefetching for the cache hierarchy. The core idea

behind hardware cache prefetching is to proactively fetch data blocks into the cache hier-

archy before a core explicitly requests them, alleviating the pressure placed on the memory

subsystem by contemporary applications with massive working set sizes that caches cannot

fully store [114, 197, 203, 227, 247].

Modern processor designs heavily rely on predictive schemes when making important

control and data flow execution decisions to maintain forward progress while awaiting re-

solving instructions [197, 198, 232, 301]. In practice, fundamental computer architecture

concepts like instruction-level parallelism and out-of-order execution heavily depend on the

effectiveness of µarchitectural prefetchers and predictors. Without predictive schemes, pro-

cessor architectures might still be relegated to the age of stall-heavy sequential execution.

This is the reason why hardware prefetching has been a very popular research domain with

myriads of hardware prefetchers being proposed in recent literature [61, 62, 75, 76, 80,

116, 143, 144, 150, 159, 172, 195, 206, 217, 225, 251, 260, 262, 263, 265, 293, 294, 303];
from simple next-line, next-N-line, and stream prefetchers [105, 116, 260] to sophisticated

and complex prefetching modules [75, 80, 172, 293, 294, 303] that target different types

of memory access patterns.
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Hardware prefetching has the potential to provide outstanding performance and energy

enhancements but its benefits heavily depend on the properties and the implementation

details of the underlying prefetcher. At the extreme, an oracle hardware prefetcher would

proactively fetch all useful memory blocks into the first level cache at zero cost, thus all

memory accesses would find the requested memory blocks in the first level of the cache

hierarchy, avoiding energy and latency-hungry main memory accesses. However, real-world

hardware prefetchers are far from approaching the performance of the oracle hardware

prefetcher because their prefetch engines cannot identify all possible access patterns in

a timely manner, thus some prefetches are either early or late or completely inaccurate,

wasting useful resources such as energy, bandwidth, and cache capacity. Finally, hardware

prefetching may even harm performance when the underlying prefetcher fails at detecting

the memory access patterns of the application but keeps issuing prefetch requests.

Designing a hardware prefetcher capable of identifying the majority of the memory

access patterns across different types of workloads is a very ambitious and challenging task

because the prefetcher should concurrently address three demanding challenges in order

to effectively hide the processor-memory performance gap: (i) What to prefetch, (ii) When

to prefetch, and (iii) Where to prefetch. In other words, the hardware prefetcher should (i)

be effective and accurate by issuing prefetch requests that mostly provide cache hits–What,

(ii) ensure timely fetched prefetched blocks and avoid late prefetches by predicting when to

issue prefetch requests–When, and (iii) select in which data structure the prefetched blocks

should be stored and, potentially, which blocks should be victimized–Where.

Effective hardware prefetching has proven successful in attenuating the Memory Wall

bottleneck; this is the reason why real-world designs employ various hardware prefetchers

at different levels of the cache hierarchy [23, 126, 133, 179, 242, 256, 261, 266]. However,

the details of the different hardware prefetchers integrated in real-world implementations

are not publicly available for most processor vendors. Despite myriads of prior research

works in the domain of hardware prefetching [61, 62, 75, 76, 80, 116, 143, 144, 150, 159,

172, 195, 206, 217, 225, 251, 260, 262, 263, 265, 293, 294, 303], there is still potential for

large performance enhancements by designing intelligent hardware prefetching modules,

composed of one or more prefetch engines, capable of gracefully handling all challenges

of hardware prefetching (What to prefetch↔When to prefetch↔Where to prefetch) since

existing hardware prefetchers’ performance is far from approaching the performance of the

oracle hardware prefetcher.
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1.3 Virtual Memory Systems

Virtual memory is a memory management technique that provides an idealized abstraction

of the available storage resources on a given machine [87], creating the illusion to pro-

grammers of enormous main memory sizes. In virtual memory systems, programs solely

operate on virtual addresses, thus, when they issue a memory request, a translation from

the virtual address space to the physical address space needs to be performed.

Virtual memory provides unique benefits that are vital for the success of computing; it

increases programmer productivity by removing the need to deal with the complexity of

the physical address space while ensuring process protection and isolation, among others.

Someone could understand the importance of virtual memory for computing by trying to

answer the following questions: (i) Do you think about the existence of virtual memory when

writing code today? (ii) Would you keep on writing code in the absence of virtual memory?

Nothing comes for free and virtual memory is not an exception. Programs perform mem-

ory accesses using virtual addresses, thus each memory access requires a translation from

the virtual to the physical address space. This address translation incurs high performance

and energy overheads [55, 58, 66, 71, 82, 84, 99, 117, 166, 175, 202, 237] because it is

on the critical path of memory accesses, as the physical addresses must be determined be-

fore accessing the actual data. Despite the overheads, processor vendors implement virtual

memory due to its unique benefits and they try to reduce the virtual memory overheads by

providing both software and hardware support dedicated to address translation.

1.3.1 Basic Architectural Support for Address Translation

Modern virtual memory implementations rely on paging, a strategy that divides the virtual

and the physical address spaces into pages, a fixed-size chunk of contiguous memory man-

aged as a single unit. All the bookkeeping of virtual memory metadata is done by the Page

Table, a per-process data structure that stores the virtual to physical mappings for all pages

loaded to main memory. On the hardware side, the Memory Management Unit (MMU) ac-

celerates address translation through the Translation Lookaside Buffer (TLB), a hardware

structure dedicated for accelerating address translation. However, real-world implementa-

tions employ advanced hardware support for address translation; Section 1.3.2 provides an

overview of such advanced support.
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Page Table is an OS structure that accommodates the virtual to physical mappings for each

process in the system. Modern page table designs are typically hierarchical; literature refers

to hierarchical page tables as radix tree page tables. Such designs split the page table into

multiple levels. For instance, x86-64 architectures implement 4-level and 5-level radix tree

page tables [1, 31]. The building block of the page table is the Page Table Entry (PTE). Each

PTE stores all information about a virtual to physical mapping. Upon a memory request,

the processor searches the page table to find the corresponding address translation. This

procedure is known as page table walk or simply page walk. Page table walking incurs high

latency, bandwidth, and energy overheads and contributes to the Memory Wall bottleneck

due to the memory references required for obtaining the requested address translation en-

tries from the page table.

Translation Lookaside Buffer (TLB) is a small and private per-core data structure that

stores the most recently used PTEs. TLBs accelerate address translation because the pro-

cessor can rapidly obtain the commonly used address translations without triggering a high-

overhead page table walk. Upon a memory access, the processor looks up the TLB for the

requested translation. On TLB hits, the address translation is obtained fast. However, on

TLB misses, a page table walk is triggered to find the corresponding address translation.

Frequent TLB misses significantly harm system performance and enlarge the processor-

memory performance gap [55, 71, 82, 84, 237] due to the memory references introduced

by traversing the page table to obtain the corresponding address translation entries.

1.3.2 Advanced Hardware Support for Address Translation

Processor vendors dedicate additional hardware resources to implement sophisticated mod-

ules and policies aimed at reducing the address translation overheads because contempo-

rary applications place tremendous pressure on the virtual memory subsystem due to their

massive code and working set sizes. Therefore, contemporary MMU designs consist of

multi-level TLB hierarchies with separate first-level TLBs for instructions and data and uni-

fied last-level TLBs for both instructions and data, support for multiple page sizes at all

TLB levels, hardware page table walkers, and MMU-Caches [142]. Next, we provide a brief

overview of these modern MMU components.
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Multi-level TLBs. The increase in memory footprints of contemporary applications de-

mands for larger TLBs. Simply increasing the size of a monolithic TLB structure would incur

higher TLB access latencies, essentially growing the memory access critical path. Therefore,

processor vendors employ private per-core multi-level TLB hierarchies; they typically imple-

ment two TLB levels per core [5, 9, 10, 31, 142]. L1 TLBs are small with low access latency

to ensure fast search for address translations. In addition, there exist separate L1 TLBs for

instructions and data. Last-level TLBs are bigger and slower than L1 TLBs and they trade

speed for capacity to avoid frequently triggering long-latency page table walks. Finally,

last-level TLBs accommodate both instruction and data PTEs into the same structure.

Multiple Page Sizes. Modern OSes and architectures increase the effective capacity of

the TLB, known as TLB reach, by providing support for superpages or simply large pages,

i.e., pages of a size larger than standard 4KB pages. For instance, x86-64 architectures

concurrently support 4KB, 2MB, and 1GB pages. Using superpages significantly increases

TLB coverage since a single TLB entry for a superpage maps the same memory as multiple

TLB entries for standard 4KB pages. However, using page sizes larger than 4KB negatively

impacts the flexibility of memory management while providing coarse-grained page pro-

tection. Finally, the advent of multiple page size support in modern OSes and architectures

asks for non-trivial design choices. Separate or unified L1 TLBs for different page sizes?1

Separate or unified last-level TLBs for different page sizes? Section 2.3.3 elaborates on

the advantages and drawbacks of the different implementation alternatives of supporting

multiple page sizes while commenting on the decisions taken by leading processor vendors.

Hardware Page Table Walkers. In the absence of hardware page table walkers, the pro-

cessor was context switching to the OS on every TLB miss [149, 151] that incurs tremen-

dous performance penalties. However, modern architectures perform page walks entirely

in hardware, obviating the need for context switching on every TLB miss [67, 71, 86, 120].
Hardware page table walkers are finite state machines that partially hide the latency cost of

page table walks by overlapping independent instructions thanks to out-of-order execution

while concurrently serving multiple TLB misses [67, 190, 219, 221, 222]; typically up to 4

concurrent TLB misses.
1L1 TLBs are already split between instructions and data.
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MMU-Caches. To reduce the latency cost of page walks, processor vendors employ small

and low-latency hardware structures, called MMU-Caches [66, 82, 142, 215], that store

entries from the intermediate levels of the page table. MMU-Caches bring significant per-

formance and energy enhancements since they enable skipping one or more page table

level lookups, essentially reducing the latency cost as well as the memory footprint of page

walks. For instance, hitting in all MMU-Caches implies that the corresponding page walk

needs to perform only one memory reference for the leaf page table level; without MMU-

Caches multiple memory references would be needed to obtain the translation, depending

on the page table organization.

1.4 Motivation

The performance of page-based virtual memory significantly impacts the overall perfor-

mance of the system since each memory access requires a translation from the virtual to

the physical address space. When address translation is performed efficiently, it enables

fast memory accesses and ultimately ensures high system performance. On the other hand,

when address translation is performed inefficiently, the memory accesses take many cy-

cles to complete, essentially exacerbating the Memory Wall bottleneck. Therefore, efficient

address translation is a prerequisite for efficient and reliable computing.

1.4.1 Mismatch in TLB and Memory Sizes

Physical memory is growing exponentially cheaper and larger over the years [69]. This

trend has enabled practical physical memory sizes to grow from megabytes to multi-gigabytes

and now even to terabytes. This increase in physical memory sizes motivated the advent of

emerging workloads with massive data and code footprints that ask for low-latency mem-

ory accesses. Therefore, modern systems need to efficiently translate addresses for multi-

gigabytes or even terabytes of memory. This ever-growing trend in memory requirements

of contemporary workloads stretches the virtual memory subsystem.

Despite the presence of many sophisticated software and hardware schemes dedicated

to address translation, some of them were briefly introduced in Section 1.3.2, the virtual

memory subsystem still performs poorly when applications with large data and/or code
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footprints are executed in the system because the increase in the data/code sizes of these

applications outpaces the increase in TLB sizes. The reason for this mismatch is that TLB

accesses are on the critical path of accessing memory, necessitating fast access times and

low lookup latencies. Therefore, augmenting the TLB structures with additional entries is

not a viable and scalable solution; it may improve TLB coverage for some workloads but

would also increase the TLB lookup latency as well as the energy consumption of address

translation, essentially enlarging the critical path of execution. For this reason, TLB sizes

have experienced only nominal growth over the years.

The main takeaway is that TLB sizes are growing at a slower pace than the data and

code footprints of contemporary applications, thus, there is a big need for novel designs and

implementation approaches capable of effectively hiding this mismatch without incurring

high area, storage, and energy overheads.

1.4.2 Unexploited Address Translation Metadata

Another key aspect brought by page-based virtual memory systems is the large amount of

information and metadata available at the hardware and the runtime system levels, which

neither current architectures nor software stacks fully exploit despite their potential for en-

abling significant performance and energy improvements. Designing efficient and easily

implementable modules that propagate the address translation metadata to µarchitectural

components without direct access to this information has the potential to provide outstand-

ing benefits by (i) enabling µarchitectural optimizations that improve performance and en-

ergy efficiency, and (ii) opening up new research on designing modules that smartly exploit

the address translation metadata available at the µarchitecture.

1.5 Thesis Approach

Despite groundbreaking technological innovations and revolutions, Memory Wall still limits

system performance due to the discrepancy between processor and memory speeds. Virtual

memory further aggravates the Memory Wall bottleneck due to the requirement of travers-

ing the memory hierarchy (caches and main memory) multiple times per TLB miss to ex-

tract the corresponding translations from the radix tree page table. To make matters worse,

the advent of emerging workloads with massive data and code footprints places additional
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Figure 1.1: Cartoon illustrating the contributions of this thesis integrated into a modern
µarchitecture. The first contribution (blue) is a composite TLB prefetcher for data accesses. The sec-
ond contribution (orange) is the first ever TLB prefetcher for instruction accesses. The third contri-
bution (green) is the first work to exploit address translation metadata available at the µarchitecture
for improving the efficacy of lower-level cache prefetchers.

pressure on the virtual memory subsystem as well as the memory hierarchy, threatening the

performance and the efficiency of computing. This thesis aims at reducing these overheads

by designing and proposing advanced hardware prefetching mechanisms for page-based

virtual memory systems.

We design hardware prefetching modules for the last-level TLBs that consist of mul-

tiple low-cost and low-scope prefetchers coupled with additional smart components that

dynamically adjust the prefetching strategy. The proposed composite prefetching mod-

ules proactively fetch address translation entries into the TLB hierarchy, saving latency and

energy-hungry page walks for both data and instruction accesses.

Apart from designing prefetching modules for the last-level TLBs, we demonstrate how

to exploit address translation metadata available at the µarchitectural levels to improve the

efficacy of any hardware cache prefetcher, without modifying the underlying prefetcher’s

design. Finally, we transparently modify the design of hardware cache prefetchers to in-

herently use the available address translation metadata and take them into account when

driving prefetching decisions.
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1.6 Thesis Contributions

Motivated by the disparity between TLB sizes and data/code working set sizes of con-

temporary applications, the first two contributions of this thesis are composite prefetching

modules for the last-level TLB, capable of accelerating address translation associated with

data and instruction accesses, respectively. The final contribution of this thesis proposes

µarchitectural techniques that improve the efficacy of cache prefetchers operating in the

physical address space by enabling safe prefetching beyond standard 4KB physical page

boundaries when the system uses large pages, i.e., pages larger than 4KB. Figure 1.1 illus-

trates the contributions of this thesis integrated into a modern µarchitecture. Followingly,

we comment on the core idea behind each contribution.

1.6.1 Agile Prefetching for the Data TLB Miss Stream

Address translation overheads due to data accesses is a major performance bottleneck in

workloads featuring large data working sets [55, 58, 66, 71, 82, 84, 99, 117, 175, 202,

237, 298]. These workloads exacerbate TLB pressure, causing frequent data TLB misses

that incur high performance and energy costs due to the page walks required for fetching

the corresponding address translation entries.

A variety of prior work seeks to ameliorate the address translation bottleneck for data

accesses. These approaches mainly fall into three categories: (i) conservative schemes that

increase TLB reach [103, 212, 219, 246, 270, 271], (ii) disruptive approaches [51, 71, 169],
and (iii) TLB prefetching mechanisms [85, 165]. Conservative approaches are limited by

coalescing opportunities exposed by the application and OS as well as the capacity of the

TLB hierarchy. Disruptive approaches call for a radical re-engineering of the virtual mem-

ory subsystem, hindering their adoption and possibly introducing new security vulnerabil-

ities. Finally, TLB prefetching is a pure µarchitectural technique that relies only on the

memory access patterns of the application, is independent of the system state (OS, load,

fragmentation), is not disruptive for the virtual memory subsystem, and does not imply any

OS involvement. Surprisingly, we found that there has been a scarcity of research in TLB

prefetching for over a decade.

In this work, we take a fresh look at µarchitectural TLB prefetching for data accesses.

First, we analyze and evaluate previously proposed data prefetchers for the second-level
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TLB, using an extensive set of academic and industrial workloads. Our analysis extracts

the following key findings: (i) no single prior TLB prefetcher performs best across all eval-

uated workloads, i.e., different prefetchers perform best for different workloads, and (ii)

some workloads do not benefit from TLB prefetching since they experience highly irregular

patterns. For these workloads, previously proposed TLB prefetchers either naively continue

to issue prefetches, burdening the memory subsystem with additional page walk references

without providing any benefit, or pessimistically avoid issuing prefetch requests missing

opportunities for improving system performance.

We further observe that previously proposed TLB prefetchers always trigger a prefetch

page walk1 to prefetch an address translation entry. In this work, we show that exploiting

the locality in the last level of the radix tree page table2 has the potential to significantly

enhance the performance of any TLB prefetcher by reducing the number of memory refer-

ences it triggers to serve prefetch page walks. However, we find that exploiting page table

locality for TLB prefetching in a realistic context requires a smart scheme to identify the

most useful PTEs per page walk.

The first contribution of this work is Sampling-Based Free TLB Prefetching (SBFP), a dy-

namic scheme that exploits page table locality for TLB prefetching. SBFP predicts through

sampling which of the cache-line neighboring PTEs per page walk are more likely to pre-

vent future TLB misses and fetches them into a small TLB buffer.3 We demonstrate that

SBFP (i) provides unique benefits over the naive approach that prefetches all cache-line

neighboring PTEs per page walk, (ii) can be combined with any TLB prefetcher to achieve

notable performance gains while reducing the memory footprint of page walks and the en-

ergy consumption of address translation, and (iii) can operate on page walks triggered to

serve both demand accesses and prefetch requests.

To address our first two findings –no single prior TLB prefetcher performs best across

all workloads, and some workloads are not benefited by TLB prefetching– we design and

propose the Agile TLB Prefetcher (ATP), a composite TLB prefetcher for data accesses, im-

plemented as a decision tree, a supervised learning approach [20]. Unlike prior work that

correlates patterns using single features (e.g., strides or PCs or distances), ATP considers

several features by combining three low-cost and low-scope TLB prefetchers while adapt-

1Prefetch page walks are page walks triggered in the background and speculatively fetch PTEs.
2At the end of each page walk, the requested PTE is grouped with 7 neighboring PTEs and they are stored
into a cache line [86].
3TLB prefetchers typically use a buffer to store the prefetched PTEs to avoid polluting the TLB [153, 165].
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1. INTRODUCTION

ing its prefetching strategy depending on the memory access pattern of the application.

To do so, ATP relies on two lightweight mechanisms: (i) adaptive selection logic that dy-

namically activates the most appropriate TLB prefetcher per TLB miss, and (ii) a throttling

scheme that disables TLB prefetching during phases when it is not helpful.

Our evaluation considers 150 academic and industrial workloads, spanning different

contemporary benchmark suites. Over the best performing prior TLB prefetcher per bench-

mark suite, ATP+SBFP improves geometric mean performance by up to 8.7%. Finally,

ATP+SBFP significantly reduces the page walk references to the memory hierarchy resulting

in up to 75% dynamic energy reduction, at a cost of 2KB of storage.

1.6.2 Markov-based Prefetching for the Instruction TLB Miss Stream

Address translation associated with data accesses has been established as a major perfor-

mance bottleneck in HPC, desktop, and big data applications that have massive data work-

ing sets, as highlighted in our first contribution, presented in Section 1.6.1. However, the

address translation overheads of instruction accesses have been neglected because these

applications feature small code footprints that fit in the TLB hierarchy. In response, the re-

search community has been mainly focused on reducing the address translation overheads

of data accesses, omitting instruction address translation.

Recent academic and industrial studies [166, 209, 304] demonstrate that modern server

and datacenter applications feature not only large datasets but also large code footprints

owing to their huge binaries and deep software stacks. As a result, these applications place

tremendous pressure on processor front-end structures (e.g., iCache, iTLB), compromising

performance due to unavoidable pipeline stalls. To make matters worse, the front-end

performance bottleneck is likely to be aggravated since the instruction footprint of modern

server and datacenter applications is annually increasing within the 20-30% range [166],
significantly outpacing the growth in the front-end structure sizes.

In this work, we argue that instruction address translation is an emerging performance

bottleneck in server applications. To support our claim, we provide the first µarchitectural

study that (i) characterizes the TLB behavior of industrial server workloads, and (ii) pro-

vides evidence that instruction address translation is a performance bottleneck in servers.

Surprisingly, minimal attention has been paid to the instruction address translation costs

of server and datacenter applications. Existing software approaches comprise either code
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layout optimization techniques [207] or OS schemes leveraging large pages [304]. On the

hardware side, there is no prior work specifically targeting the instruction address trans-

lation bottleneck. Previously proposed hardware schemes, originally conceived to target

second-level data TLB misses, could be also effective for instruction TLB misses. Propos-

als that increase TLB reach [219, 221] have narrow applicability to the instruction address

translation problem since they are limited by coalescing opportunities exposed by the ap-

plication and the OS, and are also susceptible to security problems. Approaches proposing

an overhaul of the virtual memory subsystem [51, 71] require radical changes, which seri-

ously limits their adoption and may also bring up new security vulnerabilities. Finally, TLB

prefetching constitutes a fully legacy-preserving µarchitectural technique that relies solely

on the memory access patterns of the application, is independent of the system state, and

does not disrupt the virtual memory subsystem. However, (i) there is no previously pro-

posed instruction TLB prefetcher, and (ii) the effectiveness of prior data TLB prefetchers on

prefetching for the instruction TLB miss stream has never been analyzed.

Our analysis on a set of 45 industrial server workloads draws the following key findings:

(i) state-of-the-art designs of data TLB prefetchers are mainly unable to cover instruction

TLB misses, (ii) instruction TLB misses follow a skewed distribution, with a modest number

of pages responsible for the majority of the misses, (iii) instruction TLB miss patterns are

mostly irregular while having limited spatial locality restricted to a small region around

the triggering miss, and (iv) the instruction TLB miss stream correlates well with the miss

frequency of instruction pages.

To address these findings, we propose Morrigan, the first µarchitectural TLB prefetcher

for instruction references. Morrigan consists of two complementary modules to capture

both irregular and regular patterns: (i) an ensemble of table-based hardware Markov

prefetchers that efficiently build and store variable length Markov chains out of the instruc-

tion TLB miss stream while using a new frequency-based replacement policy to manage

their predictive structures, and (ii) a sequential prefetcher that operates only when the

Markov prefetchers are unable to produce prefetch requests. Finally, both modules of Mor-

rigan exploit the locality in the last level of the radix tree page table [86], similar to our

first contribution presented in Section 1.6.1, to further improve miss coverage.

On a set of 45 industrial server workloads, Morrigan eliminates 69% of the memory

references in demand page walks triggered by instruction TLB misses and achieves 7.6%

geometric mean speedup over a baseline without instruction TLB prefetching.
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1.6.3 Safe Cache Prefetching Beyond 4KB Page Boundaries

The increase in working set sizes of contemporary applications outpaces the growth in cache

sizes, resulting in frequent main memory accesses that deteriorate system performance due

to the disparity between processor and memory speeds [193, 295].
Prefetching is an effective technique that hides the latency cost of memory accesses by

proactively fetching data blocks into the cache hierarchy before a core explicitly demands

them, alleviating the pressure placed on the memory subsystem by applications with large

data working sets that the caches cannot fully contain [197].
Previously proposed cache prefetchers generally fall into two categories; spatial prefetch-

ers [61, 75, 143, 144, 172, 195, 251, 262] and temporal prefetchers [62, 150, 176, 293,

294]. The former exploits the similarity of access patterns across different memory regions

to drive prefetching. In contrast, the latter do so by recording sequences of past cache

misses. Although effective, temporal cache prefetchers have major drawbacks compared

to spatial prefetchers: (i) spatial prefetchers require orders of magnitude less metadata

storage compared to temporal prefetchers [61], (ii) spatial prefetchers can save compul-

sory misses [263] whereas temporal prefetchers are fundamentally limited to prefetch for

compulsory misses, and (iii) spatial prefetchers not only save long-latency cache misses

but also improve the system energy consumption by eliminating DRAM row activations

[61, 143, 289].
Our analysis on four state-of-the-art spatial prefetchers operating in the physical address

space, using both academic and industrial workloads, drives the following key findings:

• Previously proposed spatial cache prefetchers operating in the physical address space

do not permit prefetching beyond 4KB physical page boundaries since physical ad-

dress contiguity is not guaranteed and crossing 4KB physical page boundaries for

prefetching is susceptible to security issues since physical address contiguity is not

guaranteed while an adversary could exploit page-crossing prefetching to create a

side-channel [128, 287].

• Modern systems predominately use large pages, i.e., pages larger than base 4KB

pages, when executing memory-intensive workloads.

• Previously proposed cache prefetchers do not take into account the existence of large

pages when driving prefetching decisions.
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• Making lower-level cache prefetchers aware of the page size information has the po-

tential to provide great benefits by enabling safe prefetching beyond 4KB physical

page boundaries when the accessed blocks reside in large pages.

• Integrating the notion of large pages into the design of a cache prefetcher may posi-

tively or negatively impact performance, depending on the properties of the workload.

Based on our findings, we propose the Page-size Propagation Module (PPM), the first

µarchitectural scheme that exploits modern prevalence and support for large pages to im-

prove the efficacy of lower-level cache prefetching. PPM propagates the page size infor-

mation to the lower-level cache prefetchers, enabling safe prefetching beyond 4KB physical

page boundaries when the accessed block resides in a large page. In practice, PPM ex-

ploits the available address translation metadata after a first-level cache miss and directs

the page size information to the lower-level cache prefetchers through the first-level caches’

Miss Status Holding Registers (MSHRs). PPM is a fully legacy-preserving scheme that oper-

ates without requiring any costly TLB lookup or reverse address translation and can be used

to enhance the performance of any lower-level cache prefetcher without requiring design

modifications. We refer to a prefetcher that exploits PPM as Page Size Aware Prefetcher (Pref-

PSA).1 Note that a Pref-PSA inherently uses 4KB pages to drive prefetching decisions since

PPM enables beyond 4KB physical page boundaries prefetching (when possible) without

modifying the prefetcher’s design.

We capitalize on the benefits of PPM by transparently integrating the notion of large

pages into the design of any cache prefetcher. We observe that doing so may positively

or negatively impact performance as some workloads enjoy great benefits by making the

prefetcher inherently use large pages while others experience performance degradation be-

cause large pages provide a coarser representation of the memory access patterns than stan-

dard 4KB pages. To avoid harming performance while exploiting the benefits of integrating

large pages in the prefetcher’s design, we implement a composite prefetching scheme that

consists of two identical versions of the same Pref-PSA. The prefetchers differ in only one

aspect; one Pref-PSA inherently uses standard 4KB pages to drive prefetching while the

other Pref-PSA uses large pages.2 In addition, the composite scheme uses adaptive selec-

1It can be any cache prefetcher operating in the physical address space.
2We focus on 2MB large pages since Linux provides automatic and transparent support, using the Transparent
Huge Pages (THP) mechanism [43], only for 2MB large pages.

15



1. INTRODUCTION

tion logic based on Set-Dueling [228] to dynamically enable the most prominent of the two

competing prefetchers. We refer to this composite prefetching scheme as Pref-PSA-SD.

To highlight our proposals’ versatility, we apply the proposed page size exploitation

techniques at four state-of-the-art L2C prefetchers [80, 172, 195, 251]. Our evaluation

shows that our proposals (i) improve geometric mean performance by up to 8.1% over the

original versions of the considered prefetchers, across 80 memory-intensive workloads and

different core configurations, by significantly improving the timeliness and the coverage of

the prefetchers and (ii) do not harm the performance of non-memory-intensive workloads.
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2
Background

This chapter provides background on the Memory Wall bottleneck while presenting the fun-

damental idea, the properties, and the challenges of hardware cache prefetching.1 Next, it

presents the basics of virtual memory, discussing different implementation strategies. Fol-

lowingly, it compares conventional and modern architectural support for page-based virtual

memory systems while highlighting the impact of virtual memory on the Memory Wall bot-

tleneck. Although architectural support for address translation is similar among different

architectures (e.g., x86 [5, 30], ARM [9], RISC-V [38]), this thesis mainly focuses on x86-

64 architectural support for address translation. Therefore, this chapter elaborates on how

x86-64 address translation is performed. Finally, it presents the basics of hardware prefetch-

ing for the µarchitectural structures of the virtual memory subsystem while commenting on

the impact of virtual memory on hardware cache prefetching. Note that the problems tack-

led by this thesis are not architecture specific, thus our contributions can be implemented

in any other contemporary architecture with virtual memory support.

1This thesis focuses on 3-level cache hierarchies. The contributions of this thesis are not dependent on the
number of cache levels.
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Figure 2.1: Disparity between processor and main memory speeds for the last 25 years.

2.1 Memory Wall

Throughout the last five decades, there have been many significant innovations in domains

of computer architecture [114]; from the µarchitecture to circuits and fabrication technolo-

gies. These innovations have led to significant improvements in processors’ performance.

Although processor speeds have experienced exponential increases, this is not the case for

main memory speeds which have featured only nominal increases [215]. Back in 1995

Wulf and McKee published an article entitled ‘Hitting the Memory Wall: Implications of the

Obvious’ [295] which (i) annotates that the computer architecture community was mainly

focused on improving processor performance, ignoring the existence of the main mem-

ory systems, and (ii) projects the processor-memory performance gap to highlight that this

gap would keep on increasing, making main memory accesses a major bottleneck for the

next-generation computing systems. The title of this article [295] is the reason why the

discrepancy between processor and main memory speeds is widely known as the Memory

Wall. Figure 2.1 depicts the Memory Wall bottleneck by showing the disparity between

main memory access latencies and CPU cycle times for the last 25 years [229]. It can be

observed that, in recent years, single-core performance experienced 3.5% annual increase

[215] while memory access latency decreases by 0.7% per year. The main takeaway is that

even if the processor-memory gap stops increasing at the same rate, the current perfor-

mance gap is large enough to necessitate mitigation techniques.
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Figure 2.2: Hierarchy of cache memories. Caches can be placed either on-chip or off-chip.

The computer architecture community has employed various latency-tolerance tech-

niques to alleviate the Memory Wall bottleneck over the years. Historically, hierarchies of

cache memories is the first attempt toward shrinking the processor-memory performance

gap. Figure 2.2 illustrates the placement of cache memories in a basicµarchitecture. Caches

closer to the core are smaller but faster than the ones closer to the main memory [148].
Moreover, caches can be placed either inside or outside the chip. The decisions regarding

the design, the size, the placement, and the properties of the different cache memories are

taken by the responsible computer architect(s).

The concept of caching relies on two types of memory reference locality [215]: spatial lo-

cality and temporal locality. Spatial locality refers to the similarity of access patterns across

different memory regions while temporal locality assumes that recently utilized memory

blocks will be utilized again within a relatively small time window. In practice, cache mem-

ories provide temporary storage for program data and instructions (i.e., memory blocks),

hoping that these blocks will be requested by forthcoming memory accesses. The ratio-

nale behind the concept of caching is simple and straightforward: accommodating recently

used memory blocks into small and fast structures would avoid long-latency main mem-

ory accesses upon requests for these memory blocks, giving the illusion that main memory

accesses are served within a few cpu cycles.

Processor vendors typically employ three-level cache hierarchies in contemporaryµarchi-

tectural designs. First-level and second-level caches are referred to as L1 cache (L1C) and

L2 cache (L2C), respectively, while the third-level cache is called last-level cache (LLC). L1

caches are split between data (L1d) and instructions (L1i) since data and instructions ac-

cesses exhibit different locality and reuse attributes. On the other hand, L2Cs and LLCs are

typically unified among data and instructions. Moreover, L1 and L2 caches are relatively

small and private per core while LLCs are big and shared among the cores of the system.

Figure 2.3 shows the anatomy of a modern cache hierarchy, including latency and capacity

specifications for a recent Intel Icelake chip [29].
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Figure 2.3: Anatomy of a modern cache hierarchy composed of three cache levels. The latency and
capacity parameters are extracted from a recent Intel Icelake chip [29].

Modern cache hierarchies partially reduce the processor-memory performance gap, es-

pecially for workloads featuring good memory reference locality, providing remarkable per-

formance benefits. However, they fall short at eliminating the Memory Wall bottleneck since

they rely on two premises that do not hold for all workload types and memory access pat-

terns. First, they are limited in capacity due to the overhead and the cost of implementing

large SRAMs near cores. Second, there is no single optimal strategy for storing and replac-

ing entries in a cache memory that is suitable for all workloads since different workloads

exhibit various memory access patterns and locality attributes. The main takeaway is that

cache hierarchies are just the first step toward ‘knocking down’ the Memory Wall.

To further bridge the processor-memory gap, computer architects back up modern multi-

level cache hierarchies with cross-layer latency-tolerance techniques such as instruction

level parallelism, out-of-order execution, speculative execution, and code and data layout

optimizations, among others. The next section presents on one of the most widely deployed

latency-tolerance techniques, hardware prefetching.
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Figure 2.4: Operation of a generic hardware prefetcher (PF) placed alongside a cache memory.

2.2 Hardware Prefetching

Hardware prefetching is a speculation technique aimed at tolerating memory access latency

and is widely applied due to its potential for reducing the Memory Wall bottleneck. The

rationale behind hardware prefetching is simple: proactively fetch data blocks closer to

a core before they are explicitly demanded by the application to avoid long-latency main

memory accesses. Hardware prefetching is an appealing research domain due to its unique

properties; it is a pure µarchitectural technique that relies only on the memory access pat-

terns of the application, is independent of the system state, does not disrupt the existing

cache subsystem, and does not require any OS involvement.

Figure 2.4 depicts the operation of a generic hardware prefetcher placed alongside a

cache memory. Upon a cache access, the prefetcher takes as input the currently requested

memory block and issues prefetch requests that speculatively fetch other memory blocks

either from the next levels of the cache hierarchy or the main memory into the cache where

the prefetcher is placed. Finally, hardware prefetching can be applied at any level of a mod-

ern cache hierarchy, as Figure 2.5 shows. Indeed, this is the most common case in modern

µarchitectural designs today [23, 126, 133, 179, 242, 256, 261, 266] since processors aim

at capturing heterogeneous memory access patterns across different types of workloads;

Section 2.2.5 discusses hardware prefetching applied in real-world chips.

A prefetch might be accurate or inaccurate. The former reduces the processor-memory

performance gap by (partially) hiding latency and energy-hungry main memory accesses.

However, an accurate prefetch might be late, early, or on-time. Late prefetches defeat the

purpose of pre-fetching since the memory blocks are not fetched by the time a core requests

them. Early prefetches are the ones fetching memory blocks that will be demanded at some

point in the future, but not from the next memory access, resulting in suboptimal cache

management. Finally, on-time prefetches are the ones that fetch memory blocks that will
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Figure 2.5: Prefetching can be applied at any level of a modern cache hierarchy. PF refers to a
generic hardware cache prefetcher.

be requested by the immediately next memory request, entirely hiding the memory access

latency while obviating any cache management implication.

2.2.1 Oracle Hardware Prefetcher

The benefits offered by a hardware prefetcher heavily depend on its implementation proper-

ties. The ideal case would be the oracle hardware prefetcher which would proactively fetch

all useful memory blocks into the L1 caches at zero overhead, making all memory accesses

hit in the L1 caches. To demonstrate that intelligent hardware prefetching has potential

for providing outstanding performance gains, Figure 2.6 shows a simplistic execution di-

agram comparing the operation of three different prefetching scenarios: (i) no hardware

prefetcher, (ii) oracle hardware prefetcher, and (iii) real-world hardware prefetcher. Figure

2.6 breaks down the execution into computation, cache lookup, and main memory access

while annotating which prefetches are late, early, on-time, and inaccurate.

In the absence of a hardware prefetcher (Figure 2.6 (A)) we observe that when a cache

miss occurs, the processor waits until the memory access is completed to continue compu-

tation. On the other hand, the oracle hardware prefetcher (Figure 2.6 (B)) always issues

on-time prefetches, i.e., prefetches that timely store in the cache the memory block that will

be requested by the next memory request, significantly reducing the execution time. Finally,

the real-world cache prefetcher (Figure 2.6 (C)) is far from approaching the performance

of the oracle prefetcher because it is incapable of identifying all possible access patterns in

a timely manner, thus some of its prefetchers are late, early, or even completely inaccurate

while on few of them are on-time.

22



Cache Hit Cache Miss Computation Memory Access Prefetch

(A)

(B)

(C)

Time

Time

late early inaccurate

on-time on-time on-time on-time on-time

on-time

Figure 2.6: Simplistic execution diagram of a system with one-level cache hierarchy equipped (A)
without any hardware prefetcher, (B) with the oracle hardware prefetcher, and (C) with a real-world
hardware prefetcher. Prefetch requests are classified into on-time, late, early, and inaccurate.

2.2.2 W3 Challenge

To hide memory access latency effectively, hardware cache prefetching modules need to be

capable of identifying and prefetching memory access patterns across a broad spectrum of

workload types. Designing such intelligent prefetching modules is a very ambitious task

due to the requirement of gracefully handling the W3 challenge: (i) What to prefetch, (ii)

When to prefetch, and (iii) Where to prefetch.

What to Prefetch. A key challenge for a hardware prefetcher is to predict which mem-

ory blocks will be requested in the near future, i.e., by subsequent memory accesses. The

prefetching algorithm is responsible for dealing with this challenge since it is the compo-

nent that drives the prefetching decisions, i.e., it determines which prefetch requests will

be issued. If the prefetcher predicts addresses correctly, then it will prefetch memory blocks

that will eventually save long-latency memory accesses. However, if the prefetcher fails at

predicting which blocks will be subsequently accessed, then the prefetch requests would

store memory blocks in the cache that would not serve any memory request. In such cases,

the prefetcher wastes resources (e.g., bandwidth, energy) due to fetching useless memory
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blocks, generates excessive traffic and contention in the memory system and pollutes the

cache structure by evicting potentially useful blocks to store the prefetched blocks.

When to Prefetch. Ideally, a prefetcher should precisely predict when to issue a prefetch

i.e., predict how many cycles in advance a prefetch should be issued so as to hide all memory

access latency. In this best case, all prefetches will be on-time. However, this is not always

the case since prefetches might be late or early, as explained in Section 2.2.1. Early prefetch-

ing has two major drawbacks; it clutters storage since the prefetched memory blocks might

be evicted from the cache before they are requested from the core and may evict useful

blocks from the cache that on-time prefetches would not, increasing the number of cache

misses observed. On the other hand, late prefetches diminish the effectiveness and defeat

the purpose of prefetching since they fail at hiding all memory access latency and may also

lead to performance degradation due to slowing down time-critical demand accesses.

Where to Prefetch. Hardware prefetchers place prefetched blocks either directly into the

corresponding cache structure or into a small buffer that accommodates only prefetched

blocks. Using such a buffer avoids any cache pollution introduced by inaccurate prefetches

at the cost of incurring additional storage and area overheads while complicating the cache

coherence protocol. Modern cache prefetchers typically select to place prefetched blocks

directly into the caches. However, this is not always the case for hardware prefetchers

belonging to architectural support for virtual memory, as we discuss in Section 2.4.

2.2.3 Efficacy Metrics

Could a hardware prefetcher capable of prefetching for most memory access patterns ap-

proach the performance gains of the oracle hardware prefetcher? The answer is no; solely

capturing the access patterns is not enough to approach the performance of the oracle

prefetcher. A prefetcher that manages to identify the memory access patterns but fails at is-

suing prefetches in a timely manner without making sure that the prefetched blocks would

not evict other useful memory blocks cannot provide significant performance enhance-

ments. The effectiveness of a modern hardware cache prefetcher should be thoroughly

examined by taking into account many well-established metrics. The most commonly used

metrics are listed below.
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Speedup quantifies how faster a system would be by using a novel module. The following

formula quantifies the speedup offered by a hardware prefetcher.

Speedup =
I PCwithout prefetcher

I PCwith prefetcher

Coverage quantifies how many of the total cache misses have been eliminated thanks to

hardware prefetching. The following formula calculates the coverage for a given prefetcher.

Coverage =
used pre f etches

total cache misses

Accuracy is a metric that answers the following question: How many prefetches were ac-

tually useful? The following formula calculates the accuracy of a cache prefetcher.

Accurac y =
used pre f etches
total pre f etches

Timeliness refers to the portion of useful prefetches that have been already stored in the

cache by the time there was a demand request for them.1 The following formula estimates

the timeliness of a cache prefetcher.

Timeliness =
on− t ime pre f etches

used pre f etches

Cache Pollution quantifies whether or not a cache prefetcher evicts useful cache blocks due

to prefetch placement. This is a hard metric to quantify and its formula is given below.

Cache Pol lut ion=
demand misseswith prefetcher

demand misseswithout prefetcher

Bandwidth Overhead answers whether or not a given prefetcher increases the bandwidth

consumption. This is not a first-class metric when designing a hardware prefetcher because

1This definition of timeliness treats all late (and early) prefetches equally. However, prefetches that are a few
cycles late (or early) have a different performance impact than prefetches that are many cycles late (or early).
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it may falsely annotate that a prefetcher harms bandwidth consumption when the prefetcher

actually utilizes idle bus bandwidth. The following formula calculates bandwidth overhead.

Bandwid th Overhead =
bandwid th consumptionwith prefetcher

bandwid th consumptionwithout prefetcher

Apart from the metrics presented above, there are additional aspects that an architect

should consider when designing a novel hardware prefetcher. First, the storage overhead

of the prefetcher; typically, it should not exceed a few percent of the corresponding cache

memory size. Second, the area overheads, i.e., how much die area it occupies. Third, the

implementation complexity, i.e., the logic required for implementing the prefetcher (e.g.,

adders, multipliers/dividers, comparators). Fourth, the computational complexity, i.e., the

amount of computation a prefetcher needs to perform in order to produce prefetch requests.

Finally, it is also of high importance to be taken into account the impact of prefetcher on

the static and dynamic energy consumption of the system.

Ideally, a hardware prefetcher should adequately satisfy all the above metrics. However,

prior cache prefetching works are mainly focused on a subset of these metrics, compromis-

ing their impact on the other metrics. For example, cache prefetchers proposed before 2010

were mainly focused on achieving high coverage without caring so much for their accuracy

and energy footprint [277]. Nowadays, there is a shift in cache prefetching design trends;

most works focus on designing sophisticated prefetching modules, often composed of multi-

ple individual prefetch engines, that aim for both high accuracy and high coverage without

exacerbating the area, storage, and energy costs [75, 80, 172, 195].

2.2.4 Classification of Prior Work

Intelligent hardware prefetchers have the potential to significantly reduce the Memory Wall

bottleneck because they rely only on the memory access patterns of the applications without

being affected by the system state. There are myriads of prior works on cache prefetching

[61, 62, 75, 76, 80, 116, 143, 144, 150, 159, 172, 195, 206, 217, 225, 251, 260, 262, 263,

265, 293, 294, 303]. This chapter classifies them in two broad categories, depending on

the characteristics of their prefetching algorithms, and reveal the fundamental properties

of each cluster. We refer interested readers to [114] for a more comprehensive analysis and

classification of prior cache prefetching works.
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2.2.4.1 Spatial Prefetching

Spatial prefetchers [61, 75, 116, 143, 144, 172, 195, 251, 260, 262] rely on spatial address

correlation, i.e., the similarity of access patterns across data structures dispersed through-

out memory with similar data layouts. For instance, spatial correlation implies that after

accessing memory blocks X,Y of a specific memory region managed as a single unit, then it

is likely to visit the same locations X,Y of another memory region managed as a unit.1

Spatial locality is a very powerful concept; this is the reason why spatial cache prefetch-

ers have been deployed in real-world chips [54, 92, 126, 179, 242, 256, 275]. The intrin-

sic properties of spatial prefetchers make them suitable for real-world implementations.

Specifically, they learn frequent access patterns by keeping track of deltas/offsets within

spatial regions and apply these deltas/offsets to other memory regions with similar behav-

iors. As a result, spatial prefetchers incur low storage overheads (typically less than a few

KBs) since they do not need to track and store individual access streams in their internal

structures. Furthermore, the ability to use observed deltas on already seen memory regions

to prefetch for unobserved memory regions permits spatial prefetchers to save compulsory

misses, which constitute a critical bottleneck in scan-dominated applications [263]. Finally,

spatial prefetches that travel all the way to DRAM to find the prefetched blocks typically

enjoy row buffer hits, downplaying the fetch order impact while reducing the energy con-

sumption of the overall system [143, 289].

2.2.4.2 Temporal Prefetching

Temporal prefetchers [62, 150, 176, 293, 294] drive prefetching decisions by recording

the sequence of past cache misses, assuming that there will be a replay of those misses

in the future. Temporal address correlation refers to memory accesses that tend to repeat

over time in the same order and it stems from specific program characteristics such as data

structures traversals (e.g., linked list) that are stable over time. For example, if at some

point in time, an access to block A is followed by an access to block B, then it is likely that

we observe the same order of accesses (A→B) in the future.

Temporal locality is another powerful tool in the hands of computer architects and has

been leveraged to design hardware prefetchers for real-world chips; an example is IBM

Blue Gene/Q [133] which includes a temporal prefetching scheme called list prefetching.

1Memory regions managed as single units are called pages in virtual memory systems, as Section 2.3 explains.
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Temporal prefetchers are ideal for saving chains of cache misses that each of them depends

on the data of the previous miss; this type of cache misses is typically encountered in ap-

plications accessing memory in a pointer-chasing fashion. This type of cache misses incurs

significant performance and energy overheads since they need to be resolved serially [134]
and cannot be eliminated by spatial prefetchers since they do not exhibit any spatial cor-

relation. Although effective for a broad spectrum of workload types, temporal prefetchers

(i) are fundamentally limited at covering compulsory misses since they drive prefetching

decisions based on the recording of previously observed accesses, (ii) access DRAM in a

fashion that nominally increases the row buffer hit ratio, and (iii) result in high metadata

storage overheads due to the need for recording a large number of data accesses over time.

Recent works mitigate the high storage overhead of temporal prefetchers through efficient

metadata structure designs [176], back-storing or caching metadata [150] and prefetching

it as needed [294], and intelligent metadata replacement policies [293].

2.2.5 Cache Prefetchers in Modern Chips

Hardware prefetching has proven successful at reducing the processor-memory performance

gap. This is the reason why nearly all modern chips employ not only one but multiple hard-

ware prefetchers at the different cache levels [23, 126, 133, 179, 242, 256, 261, 266].
Although vendors disclose that they use multiple hardware prefetchers to hide the latency

cost of frequent memory accesses, they only sometimes share information about the type of

prefetchers but they never share the implementation details and the intrinsic properties of

their prefetching modules; the only way to extract information is reverse engineering [59].

Intel’s Nehalem µarchitecture is an example where certain information about the hard-

ware prefetchers are publicly available [179]. Specifically, the Nehalem µarchitecture con-

tains four distinct hardware prefetchers to capture heterogeneous access patterns; two

prefetchers placed alongside L1d and two prefetchers operating at the L2C. The first L1d

prefetcher targets sequential patterns that correlate well with the program counter (PC)

whereas the second is a stream prefetcher that aims for long sequences of strided accesses.

The L2C prefetching module consists of a stream prefetcher and a spatial prefetcher. The

former works similarly to the L1d stream prefetcher while the latter fetches two lines instead

of one when the L2C streaming prefetcher is enabled. In a similar spirit, AMD’s Cortex-A55

[15] and Cortex-A72 [16] processors employ streaming prefetchers at L1d and L2C.
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AMD’s EPYC 7003µarchitecture [6] is another example where certain information about

the cache prefetchers are publicly available. This processor family employs three L1d

prefetchers (L1d stream, L1d stride, L1d region) and two L2C prefetchers (L2C stream,

L2C up/down). The L1d stream prefetcher fetches sequential lines (in ascending or de-

scending order) based on the history of memory access patterns. The L1d stride prefetcher

leverages the access history of distinct instructions to prefetch cache lines when each access

is a constant distance from the previous. The L1d region prefetcher is enabled when the

data access for a given instruction tends to be followed by a consistent pattern of other ac-

cesses within a localized region. Finally, the L2C stream prefetcher operates similarly to the

L1d stream prefetcher while the L2C up/down prefetcher exploits memory access history

to determine whether to fetch the next or previous line for all memory accesses.

Samsung Exynos cores are high-performance cores present in Galaxy S smartphones

and are implemented in a variety of 14nm and 7nm nodes. A recent article elaborates on

selectedµarchitectural aspects of the Samsung Exynos cores [126]. At the L1d, Exynos cores

employ two hardware prefetchers coupled with logic that avoids duplicate prefetches. The

first L1d prefetcher is a smart multi-stride prefetcher enhanced with a confidence scheme to

scale the degree of prefetching that aims at capturing regular memory access patterns. The

second L1d prefetcher is based on a previously proposed academic prefetcher [262] that

tracks primary loads to memory regions and records the offsets within these regions to drive

prefetching. Finally, Exynos cores have two additional hardware prefetchers operating at

the L2C. The first L2C prefetcher is a simple buddy prefetcher that generates a prefetch for

its neighbor (buddy) sector on every demand L2C miss. The second L2C prefetcher is a

sophisticated prefetcher based on [172] that operates in the physical address space and is

capable of properly handling long and complex streams within large structures while not

permitting page-crossing prefetching to avoid security issues.

Finally, a recent reverse engineering work [287] studies the security implications of

hardware prefetching on recent Apple processors. This work reveals that Apple M1, M1

Max, M1 Pro, and A14 processors employ an irregular cache prefetcher, named Array-of-

Pointers (AoP) prefetcher, capable of prefetching for pointer-chasing and indirect access

patterns [100, 101, 105, 111, 238, 239, 240, 303]. This work demonstrates that Apple’s

AoP is different from conventional pointer-chasing prefetchers since it prefetches access

patterns such as *A[i] or *A[strd*i], where A is an array indexed by i and strd is a stride.

We refer interested readers to the original paper [287].
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Virtual Address Physical Address
Address

Translation

Figure 2.7: The fundamental idea behind virtual memory systems→ each memory access requires
a translation from the virtual address space to the physical address space. Dotted lines indicate
actions.

2.3 Virtual Memory

In a nutshell, virtual memory is a memory management technique that provides an ideal-

ized abstraction of the available storage resources on a given machine [87]. Most modern

computing systems, from desktops to servers and datacenters, implement virtual memory to

overcome the problem of limited physical memory and provide an easy-to-use model that

ensures high programmers’ productivity.

Virtual memory provides unique benefits (programmability, security) that are vital for

the success of computing, making its presence ubiquitous in almost all computing systems.

Specifically, it allows the programmers to think that their data structures are mapped to a

big, flat, and linear virtual address space, avoiding any involvement with the complexity of

the physical address space. In addition, eschewing any interaction with the implementation

of the physical address space increases software portability since the programmer does not

need to write code depending on the physical resources of the system (e.g., RAM capacity).

Furthermore, virtual memory provides process isolation while improving process protection

by preventing other programs from accessing the memory space of other running programs

in the system. Another important aspect is that virtual memory improves the OS efficiency

on managing multiple processes by permitting programs to undersubscribe or oversubscribe

memory. Finally, virtual memory eases memory migration from one physical address to

another (e.g., from DRAM to non-volatile memory or from one socket to another).

Nothing comes for free, and so do the numerous benefits of virtual memory. In vir-

tual memory systems, programs operate on virtual addresses, thus upon memory requests,

the processor needs to collaborate with the OS and translate those virtual addresses into

physical ones. Figure 2.7 depicts the abstract operation taking place upon memory ac-

cesses in virtual memory systems. The requirement of translating virtual addresses into

physical ones incurs high overheads in terms of latency and energy consumption because

the virtual-to-physical translation is performed on the critical path of accessing memory
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[55, 58, 63, 64, 66, 71, 82, 84, 84, 95, 97, 98, 99, 109, 115, 117, 160, 161, 162, 163, 164,

166, 175, 178, 185, 191, 199, 202, 213, 236, 237, 257, 264, 298]. Despite the non-trivial

overheads and design implications, almost all real-world systems today implement virtual

memory due to its unique benefits while computer architects opt to reduce its overheads by

inventing and employing hardware structures (e.g., MMU-Caches [142]) and OS policies

(e.g., Address Space Layout Randomization or ASLR [123, 171, 249]) dedicated to address

translation. Indeed, there are myriads of prior research works [49, 53, 57, 58, 66, 99, 117,

121, 137, 139, 166, 174, 175, 186, 189, 202, 210, 211, 234, 258, 272] and accredited doc-

toral dissertations [69, 81, 102, 155, 168, 187, 220] aimed at improving and enhancing

architectural support for address translation in recent years.

2.3.1 Virtual Memory Implementation

A very important decision that needs to be made by the computer architects who are respon-

sible for designing the virtual memory subsystem is the granularity of the address transla-

tion bookkeeping. Fine-grained approaches [103, 177, 212] provide more flexibility when

managing memory than coarse-grained approaches [204, 222] at the cost of introducing

more storage overhead than the coarse-grained schemes due to the amount of address trans-

lation metadata that need to be maintained.

The most popular strategies for implementing virtual memory subsystems are paging

and segmentation. The former divides the virtual and the physical address spaces into

pages, a fixed-size chunk of contiguous memory managed as a single unit. The latter

splits the virtual address space into several big logical segments, typically code, data, and

heap [184]. Segmentation has one advantage and two major drawbacks compared to pag-

ing. The advantage is that segmentation offers space efficiency due to the large size of

the segments, making very small and fast TLBs sufficient even for applications with mas-

sive memory footprints. However, the size of the segments does not permit fine-grained

memory protection [87, 127, 222, 291] while sometimes leading to memory fragmentation

[77, 78, 87, 204, 299], i.e., when inefficient mapping of memory regions lead to wasted/i-
naccessible memory regions.

The majority of modern virtual memory implementations rely on paging due to the in-

efficiencies of segmentation. For this reason, this thesis targets to improve the performance

of page-based virtual memory systems.
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Figure 2.8: Cartoon depicting the abstraction layer of page-based virtual memory. Blue and orange
boxes represent virtual and physical pages, respectively. Arrows representing virtual to physical
mappings are one-to-one for visibility; this is not necessarily the case due to homonyms and synonyms
[87]. Homonyms refer to cases where on virtual address points to multiple physical addresses.
Synonyms refer to cases where multiple virtual addresses point to a single physical address.

2.3.2 Building Blocks of Page-based Virtual Memory

This section describes the fundamental concepts that form the base for both conventional

and modern page-based virtual memory systems, as shown in Figure 2.8.

Virtual address space is the set of memory addresses visible to the process. Programs

perform memory accesses using virtual addresses.

Physical address space is the set of memory addresses that specify where the actual data

are stored. The physical address space is not the physical memory since the former refers

to ranges of memory addresses whereas the latter refers to actual storage. Upon a memory

access, the OS is responsible to translate the virtual address of the request to a physical

address and make available the corresponding virtual to physical mapping.

Canonical form refers to the requirement of forcing specific bits of the virtual address to be

the same. For example, x86-64 and ARM architectures require bits 48-63 to be the same;1

accessing a virtual address that is not in canonical form would kick in an exception.

1x86-64 architectures are moving towards 57-bit virtual address spaces [1]. In this case, the canonical form
would imply bits 57-63 to be the same.
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Paging is a strategy that divides the virtual and the physical address spaces into fixed-

size chunks of contiguous memory managed as individual units, named pages. Modern

implementations use some form of demand paging, a strategy that brings pages into the

main memory when they are explicitly requested by the program.

Page is a chunk of memory managed as a single unit. Both virtual and physical address

spaces are split into pages. Virtual and physical pages are identified by the virtual and

physical page numbers, respectively. The virtual (physical) page numbers can be obtained

by logically shifting the virtual (physical) address by a number that depends on the actual

page size; base pages are typically 4KB but this varies between different processor vendors.

A single application may use multiple pages but there is no guarantee that these pages

would be contiguously allocated.

Page Table is a private per process OS-managed data structure that stores all the virtual to

physical mappings for all pages loaded to main memory coupled with the necessary address

translation metadata.

Page Table Entry (PTE) is the building block of the page table. Each PTE accommodates all

required information and metadata for a virtual to physical mapping in the most compact

way to avoid inflaming the memory requirements of the page table.

Page Table Walk is the procedure that searches the page table to find the translation of a

virtual page. Page table walks (generally known as page walks) can be performed either in

software or hardware.

Address translation is the process followed upon a memory request; the processor collabo-

rates with the OS to translate the virtual address into a physical address. In practice, during

address translation, the processor looks up the page table to find the corresponding trans-

lation. The process of traversing the page table to find the requested address translation

is known as page table walk or simply page walk. Depending on the implementation, page

table walking can be performed either on software or hardware. Section 2.3.3.1 describes

both options as well as what is currently implemented in modern designs.
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Figure 2.9: Conventional (top) and modern (bottom) software and hardware support for address
translation. Modern TLBs have two levels; first-level TLBs are split between data and instructions
(dTLB and iTLB, respectively) while L2 TLBs accommodate both data and instruction address trans-
lations. Modern designs further split TLBs between different page sizes. MMU-Caches are small
cache structures that store entries of the different page table levels. Page table walkers are hard-
ware finite state machines (FSMs) that perform page walks entirely in hardware. Private and shared
caches are highlighted in white color since they are not structures dedicated to address translation,
but do accommodate PTEs.

2.3.3 Architectural Support for Address Translation

Page-based virtual memory provides unique benefits that are vital for the success of com-

puting, as Section 2.3 highlights. However, these benefits come with the latency and energy

overheads of performing memory accesses in virtual memory systems; programs operate on

virtual addresses, thus upon a memory request the corresponding virtual address needs to

be translated into a physical one. To reduce these overheads while avoiding associated per-

formance pathologies, processor vendors are willing to provide both software and hardware

support to accelerate address translation [87]; dedicated hardware structures and schemes

for the common-case operations and OS policies for the less performance-critical operations

and management functions.
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Figure 2.9 compares architectural support provided for the uniprocessors of the 80s/90s

and modern computing systems of today while breaking it down into support provided by

the software and the hardware. In the conventional case (uniprocessors of the 80s/90s),

processor vendors employ separate page table caches, known as Translation Lookaside Buffers

or TLBs, for data and instructions (dTLB and iTLB in Figure 2.9) while storing PTEs into

the private caches (e.g., x86-64 architectures implement 64-byte cache lines, thus a single

cache line can store 8 PTEs since each PTE is 8 bytes). Furthermore, in the conventional

case, both dTLB and iTLB misses are handled by an OS handler that walks the page table

to find the requested translation and install it to the corresponding TLB structure (dTLB

or iTLB). Finally, architectural support for address translation during the 80s/90s provides

support only for standard 4KB pages.

Moving to modern architectural support for address translation, Figure 2.9 shows that

there are additional schemes dedicated to address translation compared to the conventional

case. On the software side, there are hierarchical page table designs, known as radix tree

page tables, that efficiently store the virtual to physical mappings of all pages loaded to main

memory [269]. Furthermore, there are smart software schemes and policies such as lazy

allocation [87], Address Space Layout Randomization (ASLR) [123, 171, 249], sophisticated

page replacement policies [91], and intelligent memory allocators [173], among others. In

addition, there is support for multiple page sizes (e.g., 4KB, 2MB, and 1GB pages in x86-64

architectures) that alleviate some of the pressure placed on the virtual memory subsystem.

Literature refers to page sizes larger than base 4KB pages as superpages or simply large pages

[7, 8, 10, 30, 43, 125, 129, 204, 250, 268]. On the hardware side, there are TLB hierar-

chies with two levels: (i) separate first-level TLBs between instructions and data that are

further split into separate TLBs for different page sizes (e.g., 4KB, 2MB, and 1GB pages in

x86-64 architectures), and (ii) last-level TLBs that accommodate both instruction and data

PTEs that occasionally support multiple page sizes within the same structure. Moreover,

there are hardware page table walkers and MMU-Caches. The former are hardware finite

state machines (FSMs) that serve TLB misses entirely in hardware, avoiding costly context

switches. The latter are small cache structures that store entries from the intermediate

levels of the radix tree page table to reduce the memory footprint of page walks. Subse-

quent sections elaborate on modern software and hardware schemes dedicated to address

translation, presented in Figure 2.9.
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Figure 2.10: Illustration of the address translation process, containing more details than Figure 2.7.
Diamonds indicate decision points while dotted lines indicate actions.

2.3.3.1 Page Table

As explained in Section 2.3.2, the page table is an OS-managed and architecturally visible

structure that accommodates all pairs of virtual-to-physical mappings for each process in

the system. The building block of the page table is the page table entry (PTE) that contains

all relevant information for a virtual page that might be mapped in a physical page.1 PTEs

store information in a compact way to avoid occupying a lot of memory for the page table

itself. The information contained in a PTE slightly varies between different architectures.

However, typical PTEs contain at least the following information:

• one bit annotating whether or not the virtual page is mapped in a physical page.

• bits that define the permitted operations within the page.

• bits that store information about the cacheability of the page.

• bit(s) indicating whether or not the page was recently accessed.

• one bit annotating whether or not the page has been modified by the core.

• the physical page number that stores the translation of the virtual page.

Figure 2.10 demonstrates how modern systems use the information contained in PTEs by

depicting the operation that takes place upon a memory access. First, it is checked whether

or not the virtual address is in canonical form; if not, an access violation is triggered. As-

suming a canonical virtual address, the next step consists of the page table traversal where

the page table is searched for finding the requested translation entry. At the end of the page

1A virtual page might be mapped in a physical page since modern OSes map memory lazily [87]. Section
2.3.3.5 presents the core idea behind the lazy allocation concept.
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Figure 2.11: PTE format on x86-64 architectures assuming standard 4KB pages.

table walk, the PTE that stores the address translation passes a validation and an access per-

mission check. If any of these checks fails a fault1 is triggered to indicate that the address

translation is not present in the page table. Otherwise, the physical address is returned to

the core and the execution continues normally.

Since this thesis is focused on x86-64 architectures, Figure 2.11 depicts the PTE format

in x86-64 architectures, assuming standard 4KB pages [31]. Bit 0 reveals whether or not

the virtual page is mapped in a physical page frame. Bit 2 indicates whether user code or

supervisor code can access the page. Bits 1 and 63 define the write and execute permissions

of the page, respectively. Bits 3, 4, and 7 reveal the caching properties of the page. Bits 5 and

6 indicate whether or not the page has been recently accessed and/or written, respectively.

Finally, bit 8 indicates whether the page is global or not; global pages have to be invalidated

upon context switches.

Hierarchical Page Tables

In its basic form, the page table is organized as a key-value data structure using the virtual

addresses as keys and the physical addresses as values. Such a design is inefficient since it

would require multi-gigabytes of memory for just storing the page table, even when appli-

cations use only a small part of the virtual address space. For this reason, real-world page

table implementations are more agile than a cumbersome key-value data structure design.

The fundamental idea behind agile page table designs is the following: only a few appli-

cations make use of the entire available virtual address space (this number is even lower

1This fault is named Page Fault. There are two types of page faults: minor and major. A minor page fault
happens when the page is allocated in the virtual address space but not in the physical address space (e.g.,
due to lazy allocation [87] – Section 2.3.3.5) and typically incurs low latency and energy overheads. A major
page fault takes place when the requested data are not present in memory (e.g., swapped out to disk due to
limited memory capacity) and need to be fetched from the disk; frequent major page faults deteriorate system
performance due to very high latency costs.
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Figure 2.12: Radix tree page table with 4 levels and 48-bit canonical virtual addresses. The names of
the page table levels (from left to right) are Page Map Level 4 (PML4), Page Directory Pointer (PDP),
Page Directory (PD), and Page Table (PT). Moving to 57-bit canonical virtual addresses would require
implementing a radix tree page table with 5 levels.

when page sizes larger than standard 4KB pages are used). In practice, most modern page

tables are designed as hierarchical structures, known as radix tree page tables. However,

there are alternative design approaches. Inverted page tables are such an example and are

commonly employed in the PowerPC and UltraSPARC architectures [140, 146, 147]. This

thesis targets x86-64 architectures, thus this section focuses on radix tree page tables.

Figure 2.12 presents the design and the operation of a 4-level radix tree page table,

assuming standard 4KB pages and virtual addresses in 48-bit canonical form. The names

of the page table levels (from left to right) are Page Map Level 4 (PML4), Page Directory

Pointer (PDP), Page Directory (PD), and Page Table (PT). To obtain the address translation

of a virtual page, all page table levels need to be traversed sequentially. First, the virtual

address is split into parts that are used to index the different page table levels; the base

address of the first page table level (PML4) is stored in the CR3 register. The operation is

the same for all page table levels; the entries of the previous page table level store pointers

to the base of the next page table level and the corresponding bits of the virtual address are

used for indexing. In this case where the pages are 4KB, the intermediate page table levels

(PML4, PDP, and PD) can be interpreted as monolithic page table structures that contain

pointers to other monolithic page tables instead of pointers to a physical page.
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Figure 2.13: (A) Format of a PDP entry that maps to a 1GB page (up) and references a PD (down).
(B) Format of a PD entry that maps to a 2MB page (up) and references a PT (down).

Multiple Page Sizes

The above explained operation takes place when the page size is 4KB. However, contempo-

rary computing systems support multiple page sizes to accelerate address translation. For

example, x86-64 architectures provide support for 4KB, 2MB, and 1GB superpages. What

is the impact of supporting more than one page sizes on the design and the operation of a

4-level radix tree page table? The answer to this question is that the design of radix tree

page tables favors the usage of multiple page sizes since each page table level can be in-

terpreted as an individual page table that may point to another page table or directly to a

physical address. To explain the core idea, we assume x86-64 architectures with support

for 4KB, 2MB, and 1GB pages. The entries of the PT level of the page table store transla-

tion information about a 4KB memory block whereas entries from the PD and PDP levels

hold translation information for 29 * 4KB = 2MB and 29 * 29 * 4KB = 1GB memory areas,

respectively.12 Therefore, to support 2MB and 1GB pages alongside standard 4KB pages,

1To calculate the memory region mapped by the intermediate page table levels we multiply with 29 since 9
bits of the virtual address are used to index each page table level, as shown in Figure 2.12.
2A PML4 entry contains the address translation of a 512GB (29 * 29 * 29 * 4KB) memory area, but x86-64
architectures do not use that large page sizes.
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x86-64 architectures make the PDP and PD entries store the translations of 2MB and 1GB

pages, respectively, instead of storing a pointer to the next page table level. This happens

only when the page size is 2MB or 1GB; when the page size is 4KB the PDP and PD levels

store pointers to the next page table levels to ensure correct translation for 4KB pages. To

deliver such information to the µarchitecture implies that the format of the PDP and PD

entries would be different when pointing to a physical page or to the next page table level.

Figures 2.13 (A, B) present the format of a PDP and a PD entry when pointing to a physical

page (1GB and 2MB, respectively) or to the next page table level (PD and PT, respectively).

Therefore, page walks for 4KB, 2MB, and 1GB pages incur up to 4, 3, and 2 references to

the memory hierarchy (caches, DRAM), respectively. Consequently, superpages reduce the

latency and energy cost of page walks due to the requirement of traversing fewer page table

levels to obtain the address translation.

2.3.3.2 Translation Lookaside Buffer (TLB)

In virtual memory systems, each memory operation asks for a virtual-to-physical address

translation. Focusing on x86-64 architectures with 4-level radix tree page tables, each mem-

ory access would require searching for the requested address translation in the radix tree

page table. This implies that 4 additional memory references (caches, DRAM) will be trig-

gered, one per page table level, to obtain the requested translation. Then, the processor

will perform the actual memory operation that was asked by the program. Introducing 4

additional memory references per memory request would be a major performance obstacle

for modern systems, especially when executing applications that frequently access memory.

To reduce the memory references due to page walks and accelerate address transla-

tion, processor vendors store the mostly used address translation entries into a dedicated

structure named Translation Lookaside Buffer (TLB). More precisely, TLBs are small private

per-core buffers that cache entries from the last level of the radix tree page table, presented

in Figure 2.12. TLBs partially reduce the address translation overheads by making the most

commonly used PTEs rapidly available to the processor, obviating the need for triggering

long-latency page table walks to fetch the corresponding translations. Figure 2.14 depicts

the process of accessing memory when the system employs a generic TLB structure while il-

lustrating what is typically stored in a TLB entry. In practice, upon a memory access request,

the processor looks up the TLB for the requested translation. On TLB hits, the translation is
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Figure 2.14: The process of address translation when a system employs a generic TLB that stores
the most recently used PTEs. Diamonds indicate decision points while dotted lines indicate actions.

returned to the cpu. However, on TLB misses, the page table is traversed to obtain the re-

quested address translation. At the end of the page walk,1 the corresponding PTE is stored

in the TLB for future use.

As explained before, TLBs are set-associative caches dedicated to the last level of the

radix tree page table and they are typically placed close to the cpu to ensure that address

translations get rapidly available to the cpu. In addition, every memory access needs to

go through the TLB, essentially placing the TLB lookup on the critical path of accessing

memory. This is the reason why TLBs necessitate fast access times and low look-up latencies.

Consequently, TLBs cannot scale to very large sizes and associativities since increasing their

size would result in higher access latencies, essentially growing the critical path of memory

accesses.

Hierarchical TLBs

Contemporary applications feature massive working set sizes that place tremendous pres-

sure on the virtual memory subsystem [52, 55, 58, 71, 82, 117, 166, 167, 169, 175, 213,

231, 237, 298]. The increase in applications’ memory footprints asks for larger TLBs. Sim-

ply increasing the size of a monolithic TLB structure is not a scalable and viable solution to

this problem, as explained before. To address the need for larger TLBs, computer architects

1Page table walks can be performed either in software or hardware. Section 2.3.3.3 presents both options,
highlighting which approach is used by leading processor vendors.
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diagram (right) depicts the process of address translation when a system employs a 2-level TLB
hierarchy. Diamonds indicate decision points while dotted lines indicate actions.

design private per-core multi-level TLB hierarchies, similar to hardware cache hierarchies

presented in Section 2.1. Figure 2.15 (left) depicts a TLB hierarchy with 2 levels since this

is what is implemented in most modern µarchitectural designs. The L1 TLB is a small and

low-latency structure that ensures fast search for address translations. Moreover, there are

separate L1 TLBs for instructions and data (iTLB and dTLB in Figure 2.15, respectively).

The employment of separate L1 TLBs for instructions and data appears in almost all modern

processor designs because (i) such an approach reduces the chances of pipeline hazards due

to port contention in the L1 TLB, (ii) instruction and data references have different locality

properties, and (iii) instruction references are more critical for performance since the might

cause pipeline stalls while the latency cost of data references can be partially hidden by

concepts like out-of-order execution, instruction-level parallelism (ILP), and memory-level

parallelism (MLP). Contrarily, L2 TLBs are bigger than L1 TLBs to increase the probability

of satisfying as many as possible requests for address translations at the cost of being slower

and requiring more area and logic to be implemented than L1 TLBs. An important property

of L2 TLBs is that they accommodate both instruction and data address translations.

Figure 2.15 (right) presents the process that takes place upon a memory request when a

system employs a 2-level TLB hierarchy. First, the corresponding L1 TLB is searched for the

requested translation. On L1 TLB hits, the cpu gets the translation, and the memory request

42



is replayed [83]. In case the L1 TLB lookup misses, the L2 TLB is probed. On L2 TLB hits, the

processor replays the memory access, similar to L1 TLB hits. However, on L2 TLB misses,

a page walk is triggered to fetch the translation from the page table. At the end of the

corresponding page walk, the requested translation is stored in the TLB hierarchy and the

memory request is replayed. Note that the operation of the ‘TLB fill’ step depends on the TLB

inclusion policy, i.e., whether the L2 TLB is inclusive or exclusive of the L1 TLB. The most

common case is to implement mostly inclusive [86, 297] TLB hierarchies (similar to mostly

inclusive hardware caches [152]) where (i) the address translations are filled into both L1

TLB (instruction and data translations are stored into the iTLB and dTLB, respectively) and

L2 TLB, and (ii) each TLB level drives evictions based on its own replacement policy, thus

there is no need for strict inclusion between L1 TLBs and L2 TLB. For the rest of the thesis,

we use TLB to refer to a 2-level TLB hierarchy and dTLB and iTLB to refer to data and

instruction L1 TLBs, respectively, unless stated otherwise.

Multiple Page Sizes

Despite the existence of multi-level TLB hierarchies, the growth in working set sizes of con-

temporary applications outpaces the growth in TLB sizes, resulting in frequent TLB misses

that deteriorate system performance due to the page walks required for fetching the corre-

sponding address translations. Modern designs increase the effective capacity of the TLB,

known as TLB reach, by supporting page sizes larger than base 4KB pages (e.g., apart from

standard 4KB pages, x86-64 architectures also support 2MB and 1GB superpages). Super-

pages significantly improve TLB coverage since a single TLB entry for a superpage maps the

same memory as multiple TLB entries for standard 4KB pages. For example, a single 2MB

page (1GB page) maps the same memory space as 512 (262144) 4KB pages.

From the TLB perspective, handling large pages and exploiting the maximum of their

benefits requires additional storage and non-trivial design choices. Separate TLB structures

per page size or not? Is the same strategy equally effective for all TLB levels? Leading

processor vendors typically employ different L1 TLBs (both iTLB and dTLB) per supported

page size since it is difficult to build fast and energy efficient set-associative TLB structures

that concurrently support multiple page sizes. Supporting all page sizes within the same

structure would require the page size information available at lookup time. However, the

page size is known after the TLB lookup. This represents a chicken and egg problem that
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Figure 2.16: TLB organization in modern x86-64 systems that support 4KB, 2MB, and 1GB pages.
The capacity of the different TLB structures is taken from Intel’s Skylake 2018 chips [48].

processor vendors solve by implementing separate L1 TLBs per page size. Regarding the L2

TLBs, processor vendors follow a different strategy. In practice, they concurrently support a

number of page sizes within the same structure while building small separate TLBs for the

less used page sizes. For the reasons outlined above, it is challenging to support multiple

page sizes within a single set-associative structure. However, vendors do so for L2 TLBs

due to the area, storage, and energy overheads of implementing different L2 TLBs for all

supported page sizes. We refer interested readers to [48, 87, 215] for more information.

Figure 2.16 shows the TLB organization implemented in recent x86-64 architectures

while annotating the number of entries available per TLB structure for Intel’s Skylake 2018

chips [48]. There are separate iTLBs and dTLBs that are further split between different

page sizes. Typically, x86-64 architectures do not implement separate iTLBs for 1GB pages

since applications rarely use 1GB pages for code. The design of L2 TLBs is different; they

accommodate both data and instruction translations for 4KB and 2MB pages within a single

structure while a different structure is used to store the translations for 1GB pages. Finally,

TLB structures that accommodate translations for superpages have fewer entries than the

corresponding ones that store translations for 4KB pages because superpages cover much

larger memory regions than standard 4KB pages, as explained above.
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TLB Placement

The impact of address translation on the overall performance of a system heavily depends

on the TLB placement relative to the existing cache hierarchy. Depending on the first-

level cache implementation, there are four different organization strategies. However, only

three of them could be used in practical designs. Figure 2.17 illustrates these three different

configurations.

When the L1 cache is implemented as a Physically Indexed, Physically Tagged (PIPT)

structure, the address translation needs to be performed before the cache lookup. Such an

approach enables simple cache management and eases cache coherence protocols at the

cost of placing the entire TLB lookup on the critical path of accessing memory. Therefore,

when PIPT L1 caches are used, TLB sizes scale poorly with application needs.

Virtually Indexed, Physically Tagged (VIPT) L1 cache implementations permit accessing

the TLB and the L1 cache in parallel [70, 274]. This happens because VIPT caches are

indexed with bits of the virtual address and are tagged with bits from the physical address.

Therefore, the L1 caches can be indexed in parallel with the TLB lookup, partially hiding

its latency cost. The drawback of VIPT caches is that they limit the number of L1 sets due
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Figure 2.18: The building blocks of a hardware page table walker (PTW) are (i) a finite state ma-
chine, and (ii) a buffer storing information about outstanding page walk references to the memory
hierarchy (caches, DRAM).

to the requirement of extracting the cache index bits from the page offset. For example, a

system with 4KB pages (the page offset is 12 bits) and 64-byte cache lines need to use 6

bits for the cache block offset, thus only 6 bits remain for indexing. Consequently, a system

with 4KB pages can support VIPT caches with up to 64 sets.

Virtually Indexed, Virtually Tagged (VIVT) caches entirely remove the TLB lookup from

the critical path of accessing memory [70, 170, 226, 292, 302]. VIVT caches use the virtual

address for both indexing and tagging purposes, permitting TLBs to scale to larger sizes

because the TLB lookup needs to be performed after the L1 cache lookup. Despite their

latency benefits, VIVT caches have several major drawbacks. It is very challenging to detect

and raise access violations, handle synonyms, and support multi-programmed workloads

with VIVT caches.

The drawbacks of VIVT caches make processor vendors not include them in real-world

µarchitectural designs. Commodity processors typically implement VIPT L1 caches and

PIPT L2Cs and LLCs [70].

2.3.3.3 Hardware Page Table Walkers

Despite the advent of groundbreaking innovations in TLB management (e.g., hierarchical

TLB organizations, support for multiple page sizes), the reach of a modern L2 TLB with 1536

entries (Figure 2.16) and 4KB pages is only 6MB. Contemporary applications have working

set sizes much larger than 6MB, thus they place tremendous pressure on the TLB hierarchy,

resulting in frequent page walks that incur high latency and energy overheads [52, 55, 58,

63, 64, 71, 82, 84, 94, 97, 115, 117, 160, 161, 162, 163, 166, 167, 169, 175, 213, 231, 237,

276, 298]. Since contemporary memory-intensive applications experience high TLB miss

rates, the TLB miss handling mechanism plays a critical role for the overall performance of
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the system; effectively handling TLB misses can reduce the address translation performance

bottleneck.

Until the early 2000s, page table walking was performed in software [85, 93, 145, 149,

151, 201]. In software-managed approaches, every TLB miss causes a context switch and an

OS handler performs the page walk. At the end of each page walk, the translation is stored

in the TLB via dedicated ISA instruction. Despite the simplicity and flexibility offered by

software-based page walking, it incurs high performance penalties due to the requirement

of context switching to the OS on every TLB miss that forces the pipeline to be flushed while

polluting the content of the µarchitectural structures.

Modern architectures perform page walks entirely in hardware to obviate the need for

context switching upon TLB misses [67, 71, 86, 120]. To do so, vendors employ private

per-core hardware page table walkers (PTWs). A hardware PTW is a finite state machine

that is aware of the page table organization coupled with a buffer that keeps information

about the outstanding TLB misses, similar to the Miss Status Handling Registers (MSHRs)

for the hardware caches. Figure 2.18 depicts the building blocks of a hardware PTW; a

finite state machine and a dedicated buffer.

The operation of a hardware PTW is straightforward. Upon a TLB miss, the hardware

PTW accesses the CR3 register that stores the base address of the first page table level (PML4

in x86-64 architectures) and performs the page walk, as explained in Section 2.3.3.1, while

keeping all necessary information in the PTW buffer to ensure that only outstanding page

walk memory references will be issued.

Hardware PTWs significantly improve the performance of virtual memory systems for a

number of reasons. First, they obviate the need for pipeline flushes while avoiding cache

pollution and costly interrupts upon TLB misses since they operate in hardware without

any OS involvement. In addition, hardware PTWs offer the opportunity to overlap the page

walk execution with useful work and (partially) hide its latency overheads. The only dis-

advantage of hardware PTWs is that they are cumbersome with respect to the page table

organization, meaning that they are designed to operate with a specific page table organi-

zation. However, the benefits offered by hardware PTWs make leading processor vendors

ignore their limited flexibility while integrating multiple hardware PTWs (up to four) per

each core of the system to permit the execution of multiple page walks in tandem [190].
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Figure 2.19: MMU-Caches implemented in Intel x86-64 architectures.

2.3.3.4 MMU-Caches

Despite the advent of hardware PTWs, page walks still incur great latency and energy over-

heads, especially for applications that exacerbate TLB pressure. To minimize the latency

overheads of page walks upon TLB misses, computer architects have invented the MMU-

Caches [66, 82, 142, 215]. The MMU-Caches are small and fast caches that store entries

from the intermediate page table levels (PML4, PDP, and PD in x86-64 architectures), sim-

ilar to TLBs that are caches for the last page table level, as explained in Section 2.3.3.2.

Two main reasons motivated the integration of MMU-Caches in almost all modern vir-

tual memory systems. First, a page table walk triggers one memory reference per page table

level, as explained in Section 2.3.3.1. Hitting in one of the MMU-Caches eliminates one of

these memory references; at the extreme, hitting in all MMU-Caches implies that the corre-

sponding page walk would require only one memory reference for the last page table level

to obtain the address translation. The second reason is that MMU-Caches have very low

storage and area costs because the intermediate page table levels map larger portions of

the address space than the leaf page table level. For example, in an x86-64 paging scheme,

a PML4, PDP, PD, and PT entry covers a 512GB, 1GB, 2MB, and 4KB memory region, re-

spectively. Therefore, a few entries are adequate for MMU-Caches to cover a big portion of

the address space and enjoy high hit rates.
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Different processor vendors implement different MMU-Cache variations. Intel imple-

ments a variation named Page Structure Caches (PSCs) while AMD uses the Page Walk Caches

(PWCs). The former are tagged with bits from the virtual address and permit parallel

lookups while the latter are PIPT caches that need to be looked up serially. Figure 2.19

presents the MMU-Caches implemented in Intel x86-64 processors. The PLM4 cache, PDP

cache, and PD cache are indexed with the PML4, PML4+PDP, and PML4+PDP+PD offset

bits from the virtual address, respectively. In practice, upon a TLB miss, all MMU-Caches

are scanned in parallel and the hit with the longest index bits (if any) is used as starting

point for the page walk. For example, a hit in the PD cache would skip the PML4, PDP,

and PD lookups, thus the corresponding page walk would trigger a single reference to the

memory hierarchy (caches, DRAM) for the leaf level (PT) to obtain the address translation.

2.3.3.5 Software Schemes and Policies

Lazy Allocation [87] is a technique for managing new virtual memory allocations. Instead

of immediately mapping all virtual pages within a virtual memory area to new physical

pages, lazy allocation performs the allocations when the program accesses the correspond-

ing virtual pages for the first time. The main benefit of this technique is that there is no

memory waste since it makes sure that a virtual page is actually used before performing the

physical memory allocation.

Copy-On-Write [222, 244] works similarly to the lazy allocation scheme; the difference is

that it targets page duplication and not new virtual memory allocations. In practice, when a

memory region is duplicated (e.g., due to a fork system call) the new region is not physically

allocated to a new region until there is a modification to one of the two pages in question.

Address Space Layout Randomization (ASLR) [123, 171, 249] is a scheme aimed at

protecting virtual memory systems from security attacks. ASLR schemes randomly arrange

the address space positions of important data areas to prevent adversaries from predicting

processes’ target addresses. ASLR variations have been adopted in most modern OSes.

Recently, Linux has also employed Kernel Address Space Layout Randomization (KASLR) [33,

154], a scheme that leverages ASLR to randomize the positions of kernel pages.
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Page Replacement Policy aims at predicting how far in the future a page will be accessed

and evict pages from main memory that will be used furthest ahead in the future. The

most commonly used page replacement policy in systems is the Least Recently Used (LRU)

replacement policy [106] or a variation of it. In practice, most OSes implement pseudo-

LRU [50, 106], a policy that obviates the need for storing timestamps per allocated page by

maintaining a linked list of pages. The most common implementation of the pseudo-LRU

algorithm is the CLOCK algorithm [91]. CLOCK leverages the PTE access bits, presented in

Section 2.3.3.1, to get an approximation of the working set of a process. To avoid starvation,

CLOCK makes sure that the access bits of all pages are periodically reset.

Memory Allocators are schemes that try to effectively allocate physical memory upon mem-

ory requests. Intelligent memory allocators have to gracefully deal with two types of mem-

ory fragmentation [77, 78, 299]; external and internal fragmentation [27]. External frag-

mentation refers to memory holes that are not reusable due to their small size. Internal

fragmentation refers to the wasted space within a single allocation unit. The literature

presents simple memory allocators like Best Fit, First Fit, and Worst Fit, among others [26].
However, all these allocators have major drawbacks that hinder their integration into real-

world schemes. Modern OSes like Linux employ buddy allocators [173]. Such allocators try

to minimize both internal and external fragmentation while performing fast allocations and

deallocations of memory. We refer interested readers to [87] for a complete explanation of

buddy allocation and its properties.

2.4 Hardware Prefetching in Virtual Memory Systems

This section highlights that hardware prefetching can be also applied for the µarchitectural

structures that are part of the virtual memory subsystem (e.g., TLBs), elaborates on the

properties of hardware prefetching for the TLB hierarchy, and highlights the impact of vir-

tual memory on hardware prefetching applied to the different levels of the cache hierarchy.

To do so, it considers a generic system with the most commonly employed µarchitectural or-

ganization, presented in Figure 2.20; a 2-level TLB hierarchy and a 3-level cache hierarchy

where L1 caches are implemented as VIPT structures and L2C and LLC are PIPT structures,

as explained in Section 2.3.3.
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Figure 2.20: Cartoon depicting the µarchitecture of a system that employs a two-level TLB hierarchy,
VIPT L1 caches and PIPT lower-level caches.

2.4.1 Hardware Prefetching for the Virtual Memory Subsystem

Virtual memory makes the Memory Wall ‘taller’ because memory requests that miss in the

TLB hierarchy trigger page walks that traverse the memory hierarchy (hardware caches and

main memory) potentially multiple times to fetch the requested translation, as explained in

Section 2.3.3.1. In other words, virtual memory exacerbates the Memory Wall bottleneck.

Despite innovations in architectural support for accelerating address translation, pre-

sented in Sections 2.3.3, the advent of emerging workloads, spanning from HPC to server

and datacenter applications, that feature massive data and code working set sizes place

tremendous pressure on the existing TLB hierarchies, resulting in high TLB miss rates that

harm the overall performance of the system.

2.4.1.1 TLB Prefetching

Hardware prefetching can be also applied to the TLB hierarchy since TLBs are set-associative

µarchitectural structures, similar to hardware caches. Effective hardware TLB prefetching

has the potential to mitigate the latency cost of TLB misses due to its intrinsic properties:

• TLB prefetching is a pure µarchitectural technique that relies only on the memory

accesses patterns of the application.

• TLB prefetching is independent of the system state (load, fragmentation).

• TLB prefetching does not disrupt the existing virtual memory subsystem.

• TLB prefetching does not require any OS involvement
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Figure 2.21: Prefetch Buffer (PB) entry.

Intuitively, hardware prefetching can be applied for all TLB levels. In practice, com-

puter architects opt to apply prefetching only for the L2 TLB for two reasons. First, L1

TLB misses might result in L2 TLB hits, thus their latency cost might be only the L2 TLB

lookup. Secondly, implementing prefetching at the L1 TLB level may result in performance

and timeliness issues as L1 TLBs are usually designed to be small in size to minimize access

times. On the other hand, L2 TLB misses trigger page walks that inject additional refer-

ences to the memory hierarchy to obtain the requested translation, incurring high latency

and energy overheads. Finally, for the rest of the thesis, we use TLB prefetcher to refer to

an L2 TLB prefetcher, unless stated otherwise.

TLB Prefetching Properties

TLB prefetchers should address the W3 challenge, presented in Section 2.2.2, similar to cache

prefetchers. Although prior TLB prefetchers [36, 60, 85, 165] use various prefetching algo-

rithms to decide what to prefetch, they uniformly address the other two challenges; where

to prefetch and what to prefetch. They use a small buffer, named Prefetch Buffer (PB),1

to store the prefetched PTEs since it has been shown that placing prefetched PTEs directly

into the TLB hierarchy might pollute the TLB content when TLB prefetching is inaccurate

[36, 85, 165]. Figure 2.21 presents the content of a PB entry; the virtual page number, the

physical page number, and attribute bits presented in Section 2.3.3.1. As opposed to cache

prefetchers that issue prefetches on every cache access, TLB prefetchers generate prefetch

requests upon TLB misses and not on every TLB access since prefetching at every TLB access

might initiate prefetch requests for pages already stored in the TLB.

TLB Prefetching in Practice

Before diving into the operation of a system that employs hardware TLB prefetching, we

present TLB prefetching terminology that is heavily used throughout the rest of the thesis.

1PBs typically have up to 64 entries to ensure fast lookup times and use the LRU replacement policy.
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Figure 2.22: Operation of a system that employs a generic hardware TLB prefetcher. Diamonds
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Demand page walk refers to a page walk triggered due to a memory request issued by a

core. When TLB prefetching is not applied, all page walks are demand page walks.

Prefetch page walk refers to a page walk triggered to speculatively fetch an address trans-

lation from the page table. Prefetch page walks are performed in the background without

stalling the pipeline execution. TLB prefetchers issue prefetch page walks to fetch address

translations from the page table.

Page walk memory reference refers to a reference due to a page walk (demand or prefetch)

that is served by the memory hierarchy (L1↔L2↔LLC↔DRAM). Page walk memory ref-

erences are triggered for accesses that miss in the MMU-Caches, as described in Section

2.3.3.4. Therefore, a page walk might introduce up to 4 memory references and not less

than 1 memory reference, assuming a 4-level page table.

Figure 2.22 depicts the operation of a system that employs a generic TLB prefetcher, con-

sidering the most common scenario whereby a PB is used to store the prefetched PTEs and

the prefetch logic is engaged on L2 TLB misses. When a memory access occurs, the L1 TLB

is initially looked up and, on a miss, the L2 TLB is probed. In case the L2 TLB lookup results

in a miss, the requested PTE is searched for in the PB. If the translation is present in the

PB, it is moved to the TLB hierarchy, the page walk is avoided, and the processor replays

the memory request. However, on a PB miss, a demand page walk is initiated to fetch the

corresponding address translation from the page table. In case of either PB hit or miss, the
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TLB prefetcher is activated and produces new prefetch requests based on its prefetching

algorithm. Prefetch requests for address translations that are not already stored in the PB,1

require separate prefetch page walks to fetch the corresponding translations from the page

table and store them in the PB. Notably, TLB prefetchers permit only non-faulting prefetches

since prefetches are speculative events. Finally, the above explained operation is identical

for both instruction or data memory accesses; a TLB prefetcher might target to prefetch for

the instruction TLB miss stream or the data TLB miss stream.

2.4.1.2 Previously Proposed TLB Prefetchers

Processor vendors do not publicly disclose whether they apply TLB prefetching or not. How-

ever, there are academic works that propose different data TLB prefetchers. The most im-

portant ones are presented below. Note that there is no previously proposed TLB prefetcher

for instruction accesses due to the historically small instruction footprints of applications.

Sequential Prefetcher (SP)

SP [165, 277] prefetches the PTE located next to the one that triggered the TLB miss, as

shown in Figure 2.23, similar to the next-line cache prefetcher [105, 260].

Arbitrary Stride Prefetcher (ASP)

ASP [60, 165] is a TLB prefetcher that targets varying stride TLB miss patterns. To do so,

it uses a prediction table indexed with the PC. Figure 2.24 shows the organization of ASP’s

prediction table as well as its operation upon prediction table hits in steps. Each prediction

table entry has four fields: the PC for indexing, the previous virtual page that caused a TLB

1TLB prefetchers check whether the translations of their prefetch requests already reside in the PB, but not
in the TLB hierarchy because searching the TLB hierarchy for duplicates would contend with demand TLB
accesses, potentially delaying the latter.
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Figure 2.24: ASP’s operation upon prediction table hits. Diamonds indicate decision points.

miss while accessed by that PC, the corresponding stride, and a state describing whether

the stride has been unchanged for at least two consecutive prediction table hits.

The operation of ASP is simple. On a TLB miss, ASP looks up the prediction table for

possible hits (step 1 in Figure 2.24). On a prediction table miss, the PC is stored in the

first field of a prediction table entry, the stride field is invalided, and the counter of the state

field is reset. On a table hit, ASP updates the stride and the state fields using the current

and previous missing virtual pages 2 . If there is no change in the stride field, the counter

of the state field is increased; otherwise, it is reset. A prefetch takes place only when the

counter of the state field is greater than two 3 . Finally, in case of either table hit or miss,

the current virtual page number is stored in the second field of the corresponding entry 4 .

Distance Prefetcher (DP)

DP [165] is a TLB prefetcher that correlates miss patterns with distances between virtual

pages that produce consecutive TLB misses. To do so, DP leverages a prediction table. Each

prediction table entry consists of three fields: the corresponding distance for indexing, and

two predicted distances. Figure 2.25 presents (i) the organization of DP’s prediction table,

and (ii) the operation of DP upon a prediction table hit in steps.
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On a TLB miss, DP initially computes the signed distance between the current and the

previous missing virtual pages and indexes the prediction table (steps 1 and 2 in Figure

2.25). On prediction table hits, DP issues two prefetches using the current missing virtual

page number and the predicted distances contained in the second and the third fields of the

hit entry 3 . Otherwise, a new entry is inserted into the prediction table with all prediction

slots empty. In case of either table hit or miss, the entry corresponding to the previous TLB

miss is updated by inserting the distance between the current and previous missing virtual

pages in the least recently used prediction slot 4 . Finally, the currently computed distance

is stored in the register holding the previous distance 5 .

Markov Prefetcher (MP)

MP [165] targets irregular TLB miss patterns by building Markov chains out of the TLB miss

stream. Like ASP and DP, MP also leverages a prediction table to drive prefetching decisions.

Each prediction table entry has three fields: the virtual page number for indexing, and two

prediction slots that store the virtual page numbers of the PTEs to be prefetched when a

new TLB miss occurs on the virtual page stored in the first field. Figure 2.26 depicts MP’s

prediction table as well as its basic operation upon a prediction table hit.
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Upon a TLB miss, MP indexes its prediction table using the currently missed virtual page

(step 1 in Figure 2.26). On prediction table hits, a separate prefetch request is issued for

each one of the prediction slots of the hit entry 2 . On prediction table misses, there is no

prefetching happening for the current TLB miss, and a new entry is allocated to accommo-

date the currently missed virtual page with all prediction slots marked as invalid. In either

case of prediction table hit or miss, the currently missed virtual page is stored into one of

the prediction slots of the entry that accommodates the previously missed virtual page 3 .

Finally, the virtual page that currently produced a TLB miss is stored in the register holding

the previous virtual page 4 .

Additional TLB Prefetching Schemes

The previously presented TLB prefetchers (SP, ASP, DP, and MP) are state-of-the-art TLB

prefetching mechanisms. However, there are additional works in the domain of TLB prefetch-

ing. Bhattacharjee et al. [85] propose two TLB prefetching schemes for parallel applica-

tions. The first exploits TLB misses on common virtual pages among cores and pushes TLB

entries from the leader core to other cores. The second is based on DP and exploits distance-
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predictable TLB miss patterns across cores. On the software side, there is the Recency-based

TLB Preloading scheme [243]. This is a software mechanism that modifies the page table so

that each PTE stores the virtual page that is subsequently accessed and drives prefetching

by previously observed access pattern; a fundamentally similar approach that only requires

µarchitectural modifications is the MP prefetcher. The main insight behind this work is that

pages that were used recently will be referenced again.

2.4.2 Cache Prefetching in Virtual Memory Systems

In virtual memory systems, a hardware cache can be indexed and/or tagged with virtual or

physical addresses, as explained in Section 2.3.3.2. The cache implementation determines

whether prefetching is driven with virtual or physical addresses. The prefetchers placed

alongside VIPT caches have the opportunity to drive prefetching decisions using virtual

addresses whereas the prefetchers of PIPT caches are obliged to use physical addresses to

generate prefetch requests. To demonstrate the impact of virtual memory on hardware

cache prefetching, this section considers the most common scenario where the L1Cs are

implemented as VIPT structures and the lower-level caches (L2C, LLC) are PIPT structures,

as presented in Section 2.4 and Figure 2.20.

Prefetching at L1C

Modern first-level cache prefetchers use virtual addresses to generate prefetches since L1Cs

are indexed with virtual addresses. Driving prefetching decisions with virtual addresses

offers the following benefit. Two addresses that are contiguous in the virtual address space

might be very distant in the physical address space. In such cases, the access patterns

are fairly easy to detect in the virtual address space but nearly impossible to detect in the

physical address space. However, this is not the only way virtual memory impacts VIPT

L1Cs. Modern systems provide architectural support for multiple page sizes, not only stan-

dard 4KB pages. For example, x86-64 architectures concurrently support 4KB, 2MB, and

1GB pages, as explained in Section 2.3. Prefetchers placed alongside the L1C have direct

access to the TLB hierarchy. Consequently, L1C prefetchers are not obliged to prefetch

within standard 4KB page boundaries since they can access the TLB hierarchy to extract

the virtual-to-physical mappings of the pages where the prefetched blocks reside. Concep-

tually, crossing 4KB page boundaries for prefetching at L1C is a straightforward concept.
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However, things are more complicated in practice. What should L1C prefetchers do when

the translation of the page where the prefetched block resides is not present in the TLB?

Should they discard the prefetch request or fetch the corresponding translation from mem-

ory? Doing so would definitely impact (positively or negatively) performance, bandwidth,

and energy consumption depending on the accuracy of the page-crossing prefetching. An-

other critical metric that would be greatly impacted by page-crossing prefetching is the

timeliness of prefetching; even if page-crossing prefetching is accurate, it might negatively

impact prefetching timeliness and the system’s overall performance when it reaches DRAM

to find the address translations since L1C prefetchers require quick turnaround times on

memory accesses due to the sheer amount of requests seen at the first-level caches. For

these reasons, state-of-the-art L1C prefetchers [208] typically permit prefetching within

standard 4KB page boundaries.

Prefetching at L2C/LLC

Things are less complicated for the lower-level cache prefetchers (L2C and LLC prefetchers)

because virtual addresses are not propagated to these caches since they are implemented as

PIPT structures. Therefore, lower-level cache prefetchers are forced drive prefetching us-

ing physical addresses and they typically do not cross 4KB physical page boundaries since

physical address contiguity is not guaranteed, i.e., contiguous virtual addresses might not be

contiguous in the physical address space, thus permitting prefetching beyond 4KB physical

boundaries is susceptible to security issues. Allowing lower-level prefetchers to specula-

tively cross 4KB physical page boundaries may result in prefetching data from pages that a

given process does not have access to, thereby opening a side channel in which an adversary

can detect if the victim has accessed a page despite the adversary not having permissions to

that page [96, 128, 287]. Indeed, a recent reverse engineering study [287] demonstrates

how to perform a side-channel attack on recent Apple processors (e.g., Apple M1, M1 Max,

M1 Pro) by exploiting page-crossing prefetching at the lower-level caches.
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3
Agile Data TLB Prefetching

3.1 Introduction

Address translation associated with data accesses is a major performance and energy bot-

tleneck in workloads featuring large data working sets and low memory reference locality

[55, 58, 66, 71, 82, 99, 117, 166, 175, 202, 237, 298] due to the requirement for traversing

the page table to find the corresponding address translation entries. Page walk references

to the memory hierarchy incur high latency overheads, as explained in Section 2.3.3.1,

aggravating the Memory Wall bottleneck.

Prior work has quantified the cost of TLB performance [55, 71, 82, 237] and has pro-

posed several approaches to mitigate the overheads of address translation associated with

data accesses. These approaches mainly fall into three categories:

• Increasing the effective capacity of the TLB, i.e., TLB reach, by introducing explicit

hardware and OS support for address translation [71, 167, 169, 183, 213, 219, 221].

• Reducing the latency cost of TLB misses [52, 65, 66, 82, 241, 259, 300].
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• Reducing the number of TLB misses by prefetching PTEs ahead of demand TLB ac-

cesses [85, 165, 188, 243].

This chapter focuses on the last category, TLB prefetching, to reduce the address transla-

tion overheads associated with data accesses due to its unique properties; a TLB prefetcher

operates entirely at the µarchitecture without any OS involvement, is independent of the

system state, relies only on the memory access pattern of the application, and does not

disrupt the existing virtual memory subsystem.

Prior data TLB prefetchers, presented in Section 2.4.1.2, always trigger prefetch page

walks in the background to prefetch PTEs. Since page walks introduce additional references

to the memory hierarchy, data TLB prefetching might harm performance if the prefetched

PTEs are not consumed by future demand TLB accesses. Although TLB prefetching has the

potential to reduce the number of TLB misses, the large number of additional memory ref-

erences it triggers can undermine its potential for performance improvement and increase

the overall energy consumption of the system.

This chapter exploits the locality of PTEs in the last level of the radix tree page table,

presented in Section 2.3.3.1, to improve the performance of TLB prefetching while reducing

its cost in terms of page walk references to the memory hierarchy and energy consumption

of address translation. The core idea behind page table locality is that contiguous PTEs are

stored within the same cache line at the end of each page walk because the PTEs are 8 bytes

while cache lines are 64 bytes in x86-64 architectures. Therefore, a single 64-byte cache line

can accommodate up to 8 contiguously-stored PTEs that can be prefetched ‘for free’. Prior

work leverages page table locality [86, 219, 221, 255] to increase the effective capacity

of TLBs and reduce the number of page walks, but does not exploit it for TLB prefetching

purposes. This work leverages page table locality to enhance the performance and reduce

the cost of TLB prefetching in terms of page walk references. We demonstrate that naively

prefetching all neighboring PTEs into a TLB buffer after a page walk results in suboptimal

performance gains. In response, we propose Sampling-Based Free TLB Prefetching (SBFP),

a dynamic scheme that predicts through sampling which of these neighboring PTEs are

more likely to prevent future TLB misses and fetches them into a dedicated TLB buffer,

named Prefetch Buffer (PB), as explained in Section 2.4.1.1. We highlight that SBFP can

be combined with any TLB prefetcher to achieve notable performance gains while reducing

the memory footprint of page walks and the energy consumption of address translation.
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Moreover, this work proposes the Agile TLB Prefetcher (ATP), a composite data TLB

prefetching scheme particularly designed to exploit the benefits of the SBFP mechanism.

The design of ATP is driven by our analysis findings which indicate that no single prior data

TLB prefetcher performs best among different types of applications, and some workloads

do not benefit from TLB prefetching due to irregular patterns. Unlike state-of-the-art data

TLB prefetchers that correlate patterns with only one feature (e.g., constant strides, PC,

distances between virtual pages that produce consecutive data TLB misses), ATP combines

three low-cost data TLB prefetchers and adapts its prefetching strategy depending on the

memory access pattern of the application. To do so, ATP relies on two low-cost mechanisms:

(i) selection logic that dynamically activates the most appropriate data TLB prefetcher in

terms of both the accuracy of the prefetched PTE and also the usefulness of its correspond-

ing free prefetches selected by the SBFP scheme, and (ii) an adaptive throttling mechanism

that disables TLB prefetching during phases that do not benefit from it.

In summary, this chapter makes the following contributions:

• We evaluate the state-of-the-art data TLB prefetchers, presented in Section 2.4.1.2,

using a large set of both industrial and academic workloads provided by Qualcomm

for the 1st Contest on Value Prediction (CVP-1) [19], the SPEC CPU 2006 [136] and

SPEC CPU 2017 [42] benchmark suites, the GAP benchmark suite [74], and the XS-

Bench benchmark [45].

• We propose Sampling-Based Free TLB Prefetching (SBFP), a dynamic scheme that ex-

ploits page table locality by predicting which of the adjacent PTEs present in a 64-byte

cache line are most likely to save future data TLB misses and prefetch them into a ded-

icated TLB buffer. We demonstrate that combining SBFP with new and state-of-the-art

data TLB prefetchers provides significant performance and energy benefits.

• We propose Agile TLB Prefetcher (ATP), a composite data TLB prefetcher that corre-

lates patterns with multiple features by combining three easily implementable and

low-scope data TLB prefetchers while maximizing the impact of SBFP. ATP introduces

adaptive selection and throttling mechanisms to enable the most appropriate of its

constituent TLB prefetchers per TLB miss while disabling TLB prefetching during

phases that it is not helpful.
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• We propose a unified solution that combines ATP and SBFP. This approach yields a

geometric mean speedup of 16.2%, 11.1%, and 11.8% with 37%, 26%, and 5% av-

erage reduction of page walk references to the memory hierarchy for the Qualcomm,

SPEC, and Big Data (GAP+XSBench) workloads over a baseline without data TLB

prefetching, respectively. Over the best state-of-the-art data TLB prefetcher for each

benchmark suite, ATP coupled with SBFP improves performance by 8.7%, 3.4%, and

4.2% for the Qualcomm, SPEC, and Big Data workloads, respectively.

3.2 Background

All necessary background information about architectural support for virtual memory sys-

tems and hardware TLB prefetching are presented in Sections 2.3.3 and 2.4, respectively.

This section builds on top of the concepts presented in Sections 2.3.3 and 2.4, thus under-

standing these concepts is a prerequisite for following the rest of this chapter.

This chapter focuses on x86-64 architectures and considers a system with a 2-level TLB

hierarchy, a radix tree page table with 4 levels, MMU-Caches with 3 levels (called Page

Structure Caches (PSCs) in x86-64 architectures), and a 3-level cache hierarchy, similar to

Figure 2.20 in Section 2.4. In addition, it considers the most common scenario, described in

detail in Section 2.4, where TLB prefetching is solely applied for the L2 TLB, TLB prefetches

are placed into a dedicated TLB buffer, named Prefetch Buffer (PB), and the TLB prefetcher

is activated upon L2 TLB misses for data accesses; there is no prefetching happening upon

L2 TLB misses for instruction references. For the rest of this chapter, we use TLB prefetcher

to refer to an L2 TLB prefetcher for data accesses, unless stated otherwise.

3.2.1 Page Table Locality

In x86-64 architectures, the cache line size is 64 bytes and PTEs are stored contiguously in

memory while occupying precisely 8 bytes each. Therefore, a single 64-byte cache line can

accommodate up to 8 contiguously-stored PTEs [86, 278]. In practice, when a requested

PTE is read from memory at the end of a page walk, it is grouped with 7 neighboring PTEs

and they are stored into a single 64-byte cache line. Consequently, a cache line holds the

requested address translation plus 7 more PTEs that do not require additional accesses to

the memory hierarchy to be prefetched; we refer to these PTEs as ‘free’ prefetches. Note
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Figure 3.1: Locality in the last level of the radix tree page table in x86-64 architectures, assuming a
4-level radix tree page table and a TLB miss for virtual page 0xA3. This thesis interchangeably uses
the terms PTE locality and page table locality to refer to this locality.

that these neighboring PTEs are contiguous in both virtual and physical address spaces, but

they may point to non-contiguous physical pages (depending on the system state, fragmen-

tation). Figure 3.1 demonstrates how a page walk is performed in x86-64 architectures,

similar to Figure 2.12 in Section 2.3.3.1, and illustrates the locality of the PTEs in the last

level of the radix tree page table. For the rest of this chapter, we interchangeably use PTE

locality and page table locality to refer to the locality in the last level of the radix tree page

table. Finally, the term free TLB prefetching (or simply free prefetching) refers to the pro-

cess of exploiting page table locality by fetching the ‘free’ PTEs that reside within a 64-byte

cache line due to a page walk into a storage medium (it can be either the TLB or a dedicated

buffer placed alongside the TLB hierarchy).

65



3. AGILE DATA TLB PREFETCHING

3.3 Motivation

This section motivates the need for new TLB prefetching approaches since there was a

paucity of research in the TLB prefetching domain for more than 10 years. In addition, it

highlights the potential performance improvements when page table locality, presented in

Section 3.2.1, is exploited by previously proposed TLB prefetchers. To do so, we implement

and evaluate the previously proposed TLB prefetchers SP, ASP, and DP, presented in Sec-

tion 2.4.1.2, and we set their configuration parameters as proposed in the original papers;

Section 3.7.2 presents in detail their configuration. Our motivational analysis does not con-

sider the MP prefetcher, described in Section 2.4.1.2, since MP is evaluated in Section 3.8.3

to compare our proposals with another scheme that opts to improve TLB performance. Fi-

nally, all evaluated TLB prefetchers store the prefetched PTEs into a 64-entry PB that uses

the FIFO replacement policy, similar to prior work [165]; we evaluate the impact of different

PB sizes in Section 3.8.1.1.

Apart from the scenario that considers the original implementation of the SP, DP, and ASP

with a 64-entry PB, we evaluate additional scenarios to demonstrate the potential of TLB

prefetching and quantify how much benefit can PTE locality provide on TLB prefetching.

The evaluated scenarios are described below.

• We consider the case where no TLB prefetcher performs in the system but PTE locality

is exploited by storing the available PTEs into the PB on demand page walks. This

scenario quantifies the potential of leveraging PTE locality in a standalone mode, i.e.,

when there is no TLB prefetcher operating in the system and PTE locality is exploited

only for demand page walks.

• We enhance all considered TLB prefetchers (SP, DP, ASP) with an unbounded PB to

store all the available PTEs in the cache line returned at the end of each page walk for

both demand and prefetch page walks. This scenario quantifies how much PTE local-

ity exploitation can improve the performance of previously proposed TLB prefetchers.

• To quantify the upper bound of the performance that an oracle TLB prefetcher could

offer, we consider an idealized scenario; a Perfect TLB where all the accesses are hits,

i.e., the system does not experience any TLB miss, thus there is no page walk happen-

ing in the system.
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Figure 3.2: Performance of SP, ASP, DP, and Perfect TLB with and without exploiting PTE locality,
illustrated in Figure 3.1. Higher is better.

The above explained scenarios are evaluated using the ChampSim simulator [13, 124],
considering a large set of workloads. Specifically, we use industrial workloads provided

by Qualcomm for the 1st Contest on Value Prediction (CVP-1) [19], the SPEC CPU 2006

[136] and SPEC CPU 2017 [42] benchmark suites, the GAP [74] benchmark suite, and

the XSBench [45]. For the rest of this chapter, we use QMM, SPEC, and Big Data (BD) to

refer to the Qualcomm workloads from CVP-1, the SPEC CPU 2006 and SPEC CPU 2017

workloads, and the GAP plus XSBench workloads, respectively. Section 3.7 explains in

detail our simulation infrastructure, our experimental setup, and the considered workloads.

Figures 3.2 and 3.3 present the evaluation results of the previously presented scenarios.

Figure 3.2 shows the performance delivered by the previously proposed TLB prefetch-

ers (SP, DP, ASP), the Perfect TLB, and the scenario without TLB prefetcher (NoPref). In

addition, Figure 3.2 quantifies the impact of PTE locality on the performance results by

combining all schemes with the scenario that uses an unbounded PB to exploit PTE local-

ity. Note that the speedup of the NoPref scenario is non-zero only when PTE locality is

exploited. All speedups are computed over a baseline that does not use TLB prefetching.

Figure 3.2 reports speedups only for the considered SPEC benchmarks coupled with a geo-
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Figure 3.3: Distribution of the normalized number of memory references due to page walks (demand
and prefetch) depicted with box plots. Lower is better.

metric mean across all SPEC, QMM, and BD workloads for readability since our workload

set encloses 12 SPEC CPU workloads, 125 QMM workloads, and 13 BD workloads. Section

3.8 presents experimental results across all considered workloads.

Figure 3.3 quantifies the impact of TLB prefetching on the memory footprint of page

walks. To do so, it presents the distribution of the normalized number of memory references

caused by page walks (demand plus prefetch) for SP, DP, ASP, and the scenario without TLB

prefetcher (NoPref) with and without exploiting PTE locality. The Perfect TLB scenario

is omitted from Figure 3.3 since all TLB accesses are hits, thus there is no page walks

happening. The term memory reference refers to a page walk reference that is served by

the memory hierarchy (L1, L2, LLC, DRAM), as presented in Section 2.4.1.1, since our

methodology (Section 3.7) takes into account cache locality in page walks. Note that a

page walk memory reference is triggered for accesses that miss in the MMU-Caches, as

described in Section 2.3.3.4. All scenarios are evaluated with and without exploiting PTE

locality to highlight its impact on page walk memory references. The normalization factor,

100% in Figure 3.3, is the total number of memory references without TLB prefetching.

Subsequent sections elaborate on the results presented in Figures 3.2 and 3.3 and draw

the key findings of this motivational analysis which constitute the main source of inspiration

for our proposals, presented in Sections 3.4 and 3.5.
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3.3.1 Quantifying the Potential of TLB Prefetching

Looking at Figure 3.2 it can be observed that the Perfect TLB scenario significantly outper-

forms the original implementations of all considered TLB prefetchers across all benchmark

suites. Specifically, the Perfect TLB scenario yields a geometric mean speedup of 20.0%,

40.0%, and 79.0% for the SPEC, QMM, and BD workloads, respectively. The geomet-

ric speedups of the Perfect TLB scenario are 12.4%, 32.5%, and 71.4% higher than the

speedups provided by the best performing prior TLB prefetcher (it is different per bench-

mark suite) for the SPEC, QMM, and BD workloads, respectively, revealing that there is

a large room for improving TLB performance via hardware prefetching. The potential for

performance improvement is higher for the QMM and BD workloads than the SPEC work-

loads since the latter have smaller data working sets sizes than the former, thus placing less

pressure on the TLB hierarchy. However, the original implementations of the state-of-the-

art TLB prefetchers (SP, DP, ASP) fall short at identifying the TLB miss patterns since they

provide low performance gains compared to Perfect TLB, as shown in Figure 3.2.

Finding 1. Intelligent TLB prefetching has the potential to provide great performance gains.

3.3.2 Does Any Prior TLB Prefetcher Dominate?

To answer whether a single TLB prefetcher performs best across all workloads, we focus

on the speedup results of the original SP, DP, and ASP implementations without exploiting

PTE locality, presented in Figure 3.2. Overall, the original implementations of SP, DP, and

ASP provide a geometric mean speedup of 4.5%, 4.2%, and 7.6% for the SPEC workloads,

7.5%, 6.1%, and 4.8% for the QMM workloads, and 3.7%, 7.6%, and 0.5% for the BD

workloads, respectively. Looking at the geometric mean speedups, we observe that differ-

ent TLB prefetchers perform best across different benchmark suites. Specifically, ASP, SP,

and DP provide the highest performance gains for the SPEC, QMM, and BD workloads, re-

spectively. Despite ASP providing the overall highest geometric mean speedups for the SPEC

workloads, it can be observed that for some SPEC workloads SP and/or DP outperform ASP.

For example, SP provides the highest speedup for the sphinx3 benchmark among the con-

sidered TLB prefetchers. The main takeaway is that different TLB prefetchers perform best

for different workloads due to the variety of memory access patterns present in different
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workloads types. For benchmarks showing irregularly distributed stride TLB miss patterns

(e.g., cactus), ASP and DP outperform SP. By contrast, for benchmarks with sequential TLB

miss patterns (e.g., sphinx3), SP outperforms both ASP and DP due to conflicts in their

prediction tables. These conflicts force ASP and DP to discard the captured stride patterns

and, once the execution shows again a regular pattern, they require several TLB misses to

identify again the corresponding strides. Finally, SP, ASP, and DP are incapable of capturing

highly irregular TLB miss patterns (e.g., mcf). Although SP, ASP, and DP are ineffective in

these irregular scenarios, they keep on triggering prefetch page walks to serve inaccurate

prefetches.

Finding 2. There exists no single TLB prefetcher that performs best across all workloads.

3.3.3 What is the Impact of TLB Prefetching on Page Walk References?

This section quantifies the impact of previously proposed TLB prefetchers on page walk

memory references. Accurate TLB prefetches save long-latency demand page walks that

would otherwise be on the critical path of accessing memory at the cost of introducing

prefetch page walks that are performed in the background, without enlarging the critical

path of memory accesses. However, inaccurate TLB prefetching introduces additional refer-

ences to the memory hierarchy due to prefetch page walks without reducing the number of

demand page walks. Looking at Figure 3.3, we observe that without exploiting PTE locality

SP, DP, and ASP trigger 63%, 36%, and 1% additional memory references over the baseline

that does not apply TLB prefetching, respectively, for the BD workloads. Similar behavior is

observed for the SPEC and QMM workloads. SP and DP introduce a large number of page

walk references to the memory hierarchy since they keep on issuing prefetches that trigger

prefetch page walks, even when they fail at capturing the TLB miss patterns. Contrarily,

ASP has a negligible impact on the page walk memory references due to the state field of

its prediction table which acts like a throttling mechanism, ensuring that mostly accurate

prefetches will be issued.

Finding 3. TLB prefetching triggers prefetch page walks that induce additional references

to the memory hierarchy, exacerbating the Memory Wall bottleneck.
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3.3.4 What is the Potential of Exploiting Page Table Locality?

Intuitively, page table locality has the potential to significantly benefit hardware TLB prefetch-

ing due to its intrinsic properties. First, the neighboring PTEs that are transferred together

with the requested PTE could be stored into the PB and potentially save forthcoming TLB

misses. In addition, these neighboring PTEs are prefetched for ‘free’ since they do not

require any prefetch page walk to be stored into the PB, thus PTE locality exploitation de-

creases the number of prefetch page walks introduced by TLB prefetching.

To quantitatively answer whether PTE locality has the potential to improve TLB prefetch-

ing performance, we focus on Figure 3.2 and compare the performance of the considered

TLB prefetchers with and without exploiting PTE locality. We observe that all prior TLB

prefetchers experience great performance gains when they exploit PTE locality. Specifically,

SP, DP, and ASP yield geometric mean speedups of 12.1%, 9.4%, and 12.5% for the SPEC

workloads, 17.7%, 17.1%, and 13.6% for the QMM workloads, and 17.3%, 22.4%, and

14.4% for the BD workloads, respectively. Therefore, when state-of-the-art TLB prefetch-

ers exploit PTE locality, they provide higher performance than their original versions that

do not exploit PTE locality. For example, DP with PTE locality outperforms DP original

by 14.8% for the BD workloads. In addition, we observe that even the scenario without

TLB prefetcher (NoPref) that exploits PTE locality only on demand page walks provides

significant performance gains. In practice, the NoPref scenario coupled with PTE locality

delivers a geometric mean speedup of 7.1%, 13.6%, and 12.3% for the SPEC, QMM, and

BD workloads, respectively. Greater performance is reported when TLB prefetchers exploit

PTE locality because the NoPref scenario leverages PTE locality only on demand page walks,

while TLB prefetchers also issue prefetch page walks, thus they further exploit PTE locality

on prefetch page walks.

Finding 4. Exploiting PTE locality for TLB prefetching purposes has the potential to signif-

icantly improve performance.

Figure 3.3 examines the impact of PTE locality exploitation on the page walk memory

references. We observe that, when PTE locality is exploited, the number of memory ref-

erences due to page walks is massively reduced for all prior TLB prefetchers compared to

their versions that do not exploit PTE locality. SP achieves a higher reduction in page walk

memory references than DP and ASP because it issues prefetch requests using the +1 stride,
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which are likely to already be fetched in the PB due to PTE locality exploitation. DP and

ASP use larger strides, slightly reducing the impact of PTE locality on them. Finally, the re-

duction of page walk memory references is the reason why all considered TLB prefetchers

experience higher performance gains when leveraging PTE locality, as shown in Figure 3.2.

Finding 5. Exploiting PTE locality significantly reduces the page walk memory references.

3.3.5 Putting Everything Together

Our analysis indicates that smart TLB prefetching coupled with PTE locality exploitation is

a promising solution to the address translation bottleneck. However, the reported improve-

ments of exploiting PTE locality for TLB prefetching assume an ideal and indefinitely large

PB. Moreover, TLB prefetching is limited by the PB size due to latency and area overheads.

Therefore, combining PTE locality exploitation with TLB prefetching in the context of a

properly sized PB requires a smart method to select the most useful PTEs per page walk.

3.4 Sampling-Based Free TLB Prefetching (SBFP)

This section presents Sampling-Based Free TLB Prefetching (SBFP), an agile scheme that ex-

ploits PTE locality, presented in Section 3.2.1, to reduce the cost and improve the effective-

ness of TLB prefetching. SBFP uses sampling to predict which of the cache-line adjacent

PTEs, that can be prefetched for ‘free’, are more likely to prevent future TLB misses and

fetches them into the TLB PB. We demonstrate that SBFP reduces the negative impact of

prefetch page walks, it can be combined with any TLB prefetcher, and it can operate on

both demand and prefetch page walks.

3.4.1 Pushing the Envelope on Free TLB Prefetching

As described in Section 3.2.1, 7 PTEs that are ‘free’, i.e., they do not require any additional

memory operations to be prefetched, are stored in the cache hierarchy at the end of each

page walk. The naive approach is to prefetch all available free PTEs into the TLB PB. How-

ever, TLB prefetching is limited by the size of the PB, the cost of PB lookups, and the PB

area overhead. Therefore, naively storing all available free prefetches, i.e., the cache line
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Figure 3.4: Illustration of the free distance concept, assuming a page walk for virtual page 0xA3.

adjacent PTEs, per page walk into the PB provides suboptimal performance benefits due

to evicting useful prefetches from the PB while polluting the PB with inaccurate prefetches

(evaluated in Section 3.8.3). Therefore, to exploit the benefits of PTE locality in the context

of a realistic PB size, a scheme that dynamically identifies and prefetches only the useful

free PTEs per page walk is required. To address this need, we design and propose the

Sampling-Based Free TLB Prefetching (SBFP) mechanism, a dynamic scheme that predicts

via sampling the usefulness of the free PTEs per page walk and fetches in the PB only the

most likely ones to save future TLB misses.

3.4.2 SBFP Design and Operation

The operation of SBFP relies on the free distance concept. We define free distance as the

distance, within the cache line, between the PTE that holds the demand translation and

another PTE that can be obtained for free. Depending on the position of the requested PTE

in the cache line, there are 14 possible free distances: from -7 to +7, excluding 0. Figure

3.4 illustrates the free distance concept; it assumes a page walk for virtual page 0xA3 and

shows the free distances of the PTEs residing in the same cache line with the requested PTE.

For example, the free distance of the PTE of virtual page 0xA1 is -2.

3.4.2.1 Design Overview

The SBFP scheme associates each free PTE within a cache line with a free distance and

leverages this information to predict the usefulness of the corresponding PTEs. To do so,

SBFP uses three data structures: the Sampler, the Free Distance Table (FDT), and the Prefetch

Buffer (PB). Figure 3.5 presents the components and the functionality of the SBFP module.
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The Sampler is a small buffer that is responsible for detecting phases when free distances,

which were previously useless, can provide useful prefetches. To do so, each Sampler entry

stores the virtual page number and its corresponding free distance for every free PTE that

is decided not to be placed in the PB. The decision whether to place a free PTE into the

PB or the Sampler is made by the FDT, a table composed of 14 saturating counters, one

per possible free distance. Each FDT counter monitors the hit ratio of one free distance.

Finally, the PB is a fully associative buffer that stores the virtual page number, the physical

page number, and the corresponding free distance of the free PTEs, similar to the PB used

by TLB prefetchers, introduced in Section 2.4.1.1.
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3.4.2.2 SBFP Operation

To explain the operation of SBFP, we consider the example presented in Figure 3.5 that

assumes a page walk triggered for virtual page 0xA3. At the end of the corresponding page

walk, we identify the position of the requested PTE inside the cache line by extracting the

3 least significant bits of the virtual page. Therefore, the PTE of 0xA3 resides in position 4

within the cache line (counting starts from zero). Then we calculate the free distances of

all free PTEs residing in the same cache line and we associate each PTE with a free distance.

For example, the PTEs of virtual pages 0xA2 and 0xA5 are associated with free distances -1

and +2, respectively.

The next step is to determine whether a free PTE has to be stored in the PB or the

Sampler. To do so, we compare the FDT saturating counter corresponding to its free distance

with a threshold (thr in Figure 3.5). If the counter exceeds the threshold, the free prefetch

is stored in the PB; otherwise, it is placed in the Sampler. For example, the PTE of 0xA2 has

free distance -1, thus we compare the saturating counter of the FDT that corresponds to

free distance -1 (C−1) with a threshold to determine if the PTE of 0xA2 should be inserted

in the PB or in the Sampler. The same procedure is followed for each free PTE in the

cache line. Since PTEs only contain physical addresses, their virtual page numbers must be

computed before inserting them in the PB or the Sampler; the virtual page numbers of the

free prefetches are computed as the virtual page number of the demand translation plus

their corresponding free distance. For example, the virtual page number of the PTE with

free distance -1 is: 0xA3 (demand PTE) - 1 = 0xA2.

When a PB or Sampler hit occurs, the FDT counter that corresponds to the free distance

of the hit entry is incremented by one. For instance, in the case of PB or Sampler hit caused

by a prefetch that was associated with free distance -5, we simply increment by one the

FDT counter C−5. To prevent permanent saturation, we use a decay scheme that shifts right

one bit all the FDT counters when one of the FDT counters saturates.

To summarize, the proposed Sampling-Based Free TLB Prefetching (SBFP) scheme ad-

justs the values of FDT counters depending on which free distances are frequently producing

PB and Sampler hits, which makes SBFP capable of agilely predicting the most useful free

PTEs per page walk. Note that the Sampler is searched only upon PB misses, so its lookup

is not placed in the critical path of accessing memory.
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Figure 3.6: Operation when SBFP is combined with a generic TLB prefetcher. Diamonds indicate
decision points while dotted lines indicate actions.

3.4.3 Combining SBFP with TLB Prefetching Schemes

This section demonstrates that SBFP can be combined with any TLB prefetcher to exploit

the benefits of PTE locality on both demand and prefetch page walks. To do so, it considers

a system that uses a generic TLB prefetcher as well as SBFP. Figure 3.6 shows in steps the

operation of this system, pointing out the interaction between SBFP and the TLB prefetcher.

Stress that the TLB prefetcher and SBFP use a shared PB to store the prefetched PTEs.

On a TLB miss 1 , the requested translation is looked up in the PB. On PB misses 2 ,

a demand page walk is initiated to fetch the translation from the page table 3 . In the

background, the Sampler is looked up for possible hits 4 . On Sampler hits, we increment

the FDT counter that corresponds to the free distance of the hit entry 5 . When the de-

mand page walk finishes, the SBFP scheme operates and decides which free PTEs should

be placed in the PB and the Sampler 6 . On PB hits 7 , the demand page walk is avoided,

the translation is transferred to TLB 8 , and if the hit was produced by a free prefetch the

FDT counter that corresponds to the free distance of the hit entry is incremented 9 . In

either case of PB hit or miss, the TLB prefetcher is activated 10 and produces new prefetch

requests 11 . Each prefetch that misses in the PB triggers a prefetch page walk to fetch
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the corresponding translation from the page table 12 . At the end of a prefetch page walk,

the prefetched PTE is grouped with 7 PTEs that can be prefetched for free thanks to page

table locality (Section 3.2.1). At this point, SBFP is again activated to decide which of the

free prefetches should be placed in the PB or the Sampler, essentially applying lookahead

prefetching with depth 2 13 . Finally, the prefetched PTEs are stored in the PB 14 .

To further elaborate on the operation of SBFP when combined with a generic TLB

prefetcher, we consider the following example. The system experiences a TLB miss on

virtual page 0xA3 which also misses in the PB. As a result, a demand page walk is initi-

ated to fetch the corresponding PTE from the page table. When the demand page walk

finishes, SBFP compares the FDT counters with a threshold to identify the most useful free

distances for the current miss. Assuming that only free distance -1 exceeds the threshold,

SBFP fetches the PTE of the virtual page 0xA2 (0xA3-1) in the PB while the virtual pages

of the other free PTEs are stored in the Sampler. Next, we further assume that the TLB

prefetcher issues a prefetch request for virtual page 0xB7. Similarly, SBFP places the PTE

of 0xB6 (0xB7-1) in the PB since only free distance -1 exceeds the threshold; the other free

PTEs within the cache line are stored in the Sampler.

The main takeaway of this section is that SBFP can be combined with any TLB prefetcher.

Section 3.8 highlights that enhancing state-of-the-art TLB prefetchers with SBFP signifi-

cantly improves their effectiveness. Finally, in Section 3.5 we design a TLB prefetcher aimed

at maximizing the benefits of the proposed SBFP module.

3.4.4 Discussion

Modern workloads typically operate on multiple data structures that might favor different

sets of free distances. Having perfect knowledge of the most useful free distances per data

structure would require a separate FDT per each of these data structures. Alternatively,

we propose a generalized SBFP that learns from any stream of accesses and uses a decay

mechanism to ensure that only useful free distances will be used. We quantified the per-

formance benefits of the scenario that uses a different FDT per PC that produces at least

one TLB miss, and we observed modest performance gains over the generalized FDT. We

observe such behavior because once the counters of the generalized FDT saturate, the decay

mechanism lowers their values to increase their sensitivity to new data structures.
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3.5 Agile TLB Prefetcher (ATP)

This section introduces Agile TLB Prefetcher (ATP), a novel composite TLB prefetcher for data

accesses, implemented as a decision tree. Unlike state-of-the-art TLB prefetchers, presented

in Section 2.4.1.2, that correlate patterns with one feature (e.g., constant strides, PC, dis-

tances between virtual pages that produce consecutive TLB misses), ATP captures patterns

that correlate well with different features by combining three low-cost TLB prefetchers. To

do so, ATP utilizes adaptive selection and throttling schemes to dynamically enable the most

appropriate TLB prefetcher and disable TLB prefetching when it is not helpful.

3.5.1 Design Overview

Figure 3.7 presents the hardware components of ATP as well as its design which is inspired

by the decision tree algorithm [20], similar to tournament branch predictors [192]. ATP

consists of three easily implementable TLB prefetchers, named P0, P1, and P2 in Figure

3.7, to correlate the TLB miss patterns with multiple features, a single PB which is shared

among its constituent prefetchers, and the dedicated selection and throttling schemes that

require modest additional logic to be implemented: (i) a single saturating counter C0 for the

throttling mechanism, (ii) two saturating counters C1, C2 that dynamically select the most
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accurate TLB prefetcher, and (iii) a Fake Prefetch Buffer (FPB) per constituent prefetcher,

which monitor the accuracy of PO, P1, and P2 to update the values of C0, C1, and C2

accordingly. Each FPB holds only predicted virtual pages and not the corresponding address

translations; hence, the term fake.

3.5.2 ATP Operation

Figure 3.8 shows step-by-step the operation of ATP. First, ATP looks for the translation of

the missing virtual page in the FPBs of its constituent TLB prefetchers 1 . Depending on

the search outcome, the saturating counters C0, C1, and C2 are updated in step 2 . For

example, in case of a hit in at least one FPB, C0 increases its value for issuing new prefetches.

Otherwise, C0 is decreased, i.e., increases its confidence for disabling TLB prefetching.

Next, ATP uses the updated values of the saturating counters to make a decision for

the current miss. The C0 counter is responsible for choosing whether to enable or disable

TLB prefetching for the current access. If the most significant bit of C0 is one, the decision

is to issue new prefetch requests. In this case, C1 is probed to select the individual TLB

prefetcher that will generate prefetches for the current TLB miss 3 . If the most significant
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bit of C1 is one, the TLB prefetcher residing in the right leaf (P0) is selected; otherwise, C2

is responsible for selecting which prefetcher should be enabled. Likewise, if the most signif-

icant bit of C2 is one, prefetcher P2 is selected; otherwise, prefetcher P1 issues prefetches

for the current TLB miss. Finally, if the most significant bit of C0 is zero no prefetch request

will be issued for the current access.

Subsequently, ATP updates the content of all FPBs 4 . All the constituent prefetchers of

ATP store in their own FPB the virtual pages corresponding to the prefetches that they would

issue if they were allowed to individually produce prefetches plus the free prefetches that

SBFP would select after the completion of each fake page walk. Using these ‘fake prefetches’

we track the usefulness of each TLB prefetcher for future TLB misses and update the values

of the saturating counters C0, C1, and C2 accordingly.

3.5.3 Building Blocks of ATP

ATP is composed of three easily implementable TLB prefetchers that are presented below.

Stride Prefetcher (STP)

STP is a more aggressive version of SP, presented in Section 2.4.1.2. STP uses the strides

{−2,−1,+1,+2} for producing prefetch requests. Specifically, upon a TLB miss for virtual

page A, STP will prefetch the PTEs of the pages {A−2,A−1,A+1,A+2}. Figure 3.9 illustrates

the operation of STP.
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H2 Prefetcher (H2P)

H2P is a low-cost version of DP that correlates patterns with the distances between vir-

tual pages that cause consecutive TLB misses. In practice, H2P keeps track of the last two

observed distances between virtual pages that caused a TLB miss. Assuming that d(X , Y )
represents the signed distance between the pages X and Y , and 0xA, 0xB, and 0xE are the

last three virtual pages that caused a TLB miss, H2P will prefetch the PTEs of the virtual

pages: 0xE + d(0x E, 0xB) and 0xE + d(0xB, 0xA). Finally, H2P will store the current dis-

tance in the register accommodating the previous distance. The above explained operation

is shown step-by-step in Figure 3.10.

Modified Arbitrary Stride Prefetcher (MASP)

MASP is an aggressive evolution of ASP, presented in Section 2.4.1.2, that leverages a pre-

diction table indexed with the PC and targets varying stride patterns. To issue prefetch

requests, ASP requires two consecutive hits in a certain prediction table entry to display

the same stride. While this policy increases the accuracy of ASP, it misses prefetching op-

portunities. Therefore, we design MASP, implementing two modifications to ASP: (i) the

requirement of observing the same stride at least twice consecutively is removed, and (ii)

a second prefetch takes place for each TLB miss, using the virtual page that caused the

current TLB miss and the stride residing in the hit entry. Each entry of the prediction table

of MASP has three fields: the PC for indexing, the previous virtual page that caused a TLB

miss while being accessed by that PC, and the corresponding stride, similar to ASP.

The operation of MASP is straightforward and is illustrated in Figure 3.11 coupled with

an example. On a TLB miss, MASP looks up the prediction table for possible hits 1 . On a

prediction table miss, the PC is stored in the first field of a prediction table entry and the
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stride field is invalided. On a table hit, MASP issues two prefetch requests; the first uses the

stride of the hit entry and the second the distance between the virtual pages that produced

the current and the previous TLB misses while accessed by this PC 2 . Next, MASP updates

the stride using the current and previous missing virtual pages 3 . Finally, in case of either

prediction table hit or miss, the current virtual page number is stored in the second field of

the corresponding entry 4 .

Figure 3.11 elaborates on the prefetching algorithm of MASP by presenting a concrete

example where there is a TLB miss for virtual page 0xA that hits in the prediction table of

MASP. The respective entry has in the second field the virtual page E and in the third field

the stride +5. MASP will generate prefetches for the PTEs of virtual pages 0xA+ 5 and

0xA+ d(0xA, 0x E), where d(X , Y ) computes the signed distance between pages X and Y .

Insights on ATP’s Operation

ATP enables STP, H2P, and MASP when the TLB miss stream correlates well with small

strides, the distance between virtual pages that produce TLB misses, and the PC, respec-

tively. The aggressiveness of STP and H2P may negatively impact both performance and the
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number of triggered page walks, as we demonstrate in Section 3.8.1. ATP minimizes these

negative effects by enabling STP and H2P only when they are likely to produce accurate

prefetches. When the TLB miss stream exhibits irregular patterns, the throttling scheme of

ATP disables TLB prefetching until it observes again patterns that are predictable by at least

one of its constituent prefetchers, leveraging the operation of the FPBs.

Placement of STP, H2P, and MASP on ATP’s Nodes

The placement of STP, H2P, and MASP on the leaf nodes P0, P1, and P2, presented in Fig-

ures 3.7 and 3.8, plays a critical role for ATP’s performance. This placement depends on

the number of bits used for the C0, C1, and C2 counters. We empirically found that 8-bit,

6-bit, and 2-bit counters are good design points for C0, C1, and C2, respectively. For this

configuration, leaf nodes P0, P1, and P2 are assigned to H2P, MASP, and STP, respectively.

The rationale behind this placement is simple and relies on two properties: (i) when multi-

ple prefetchers experience hits in their FPBs, activate the less aggressive one, and (ii) make

sure that the aggressive prefetchers are activated when there is high confidence that they

produce accurate prefetches. Counter C1 is 6 bits, thus we assign H2P to node P0 to make

sure that H2P will be enabled only when it is proved that it produces useful prefetches

since the right node is selected when the most significant bit of the corresponding counter

is 1. In practice, this happens only when there are 16 (26/2) consecutive hits in the FPB

of H2P with concurrent misses in the FPBs of MASP and STP, as shown in Figure 3.8 which

depicts the updates of the counters depending on the FPB lookup outcomes. In a similar

spirit, STP is placed on the right node of counter C2; on the left path, there is MASP which

captures patterns that correlate well with the PC. However, counter C2 is 2 bits to enable

fast changes between MASP and STP. Still, when both MASP and STP experience hits in the

FPBs, MASP is selected since it resides on the left (default) node of counter C2.

3.5.4 Discussion

ATP could be extended with additional nodes to accommodate new TLB prefetching schemes.

This would require more counters for the selection logic and potentially different placement

of the individual prefetchers on the leaf nodes of ATP. In addition, ATP’s design is transparent

to which TLB prefetcher is used, thus an architect could replace any of the TLB prefetchers

residing in ATP’s leaf nodes with other more sophisticated TLB prefetchers. Finally, ATP’s ag-
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ile design that enables efficient and accurate switching between different prefetchers could

be utilized in other domains that seek adaptive switching between policies. Examples are

cache prefetching, branch prediction [198], and cache replacement policies among others.

3.6 ATP+SBFP : Additional Considerations

Impact on Page Replacement Policy

TLB prefetching is a speculation technique. Therefore, TLB prefetches should ideally not

influence the access bits of the prefetched pages. However, the memory consistency model

of x86 architectures dictates that TLBs are allowed to accommodate address translation

entries that have their status bits on, i.e., all TLB prefetches are obliged to set the access

bits of the corresponding pages. As a consequence, inaccurate TLB prefetches can negatively

affect the page replacement policy (Section 2.3.3.5) and lead to suboptimal decisions. Prior

work on TLB prefetching does not consider the impact on the page replacement policy due

to the growing memory capacities. However, with the advent of heterogeneous memories,

the OS has to migrate data between fast and slow memories, so accurately setting the access

bit is very important today. Section 3.8.4 shows that our proposal, ATP coupled with SBFP,

has a negligible impact on the page replacement policy that can be fully eliminated by

periodically issuing page walks that reset the access bits on inaccurate TLB prefetches.

Multiple Page Sizes

Neither ATP nor SBFP requires any modifications to support multiple page sizes. Since the

page size is known after address translation, ATP issues two prefetch requests per prefetch

candidate assuming 4KB and 2MB pages and, when the page granularity is known, one of

the prefetch page walks is discarded. This approach does not imply additional complexity

since modern architectures support speculative page walks [215]. Alternatively, page size

prediction could be used to issue a single prefetch request per candidate [212]. Regarding

the SBFP scheme, it checks whether the free prefetches are valid translation entries before

adding them in the PB or the Sampler (either valid PT entries or PD entries), even when

PD entries that map 2MB pages are next to PD entries that point to PT entries. Finally, the

PB is a fully associative structure, which avoids page size indexing implications [215].
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Page Table Designs

Both ATP and SBFP are compatible with radix tree page table designs with any number

of levels. Previous sections focus on 4-level radix tree page tables but our proposals are

compatible with 5-level radix tree page tables [1], and may deliver more benefits because

the extra page table level might increase the latency and energy cost of page walks. Finally,

if a hashed page table design [118, 140, 259, 300] is used, both ATP and SBFP would

operate the same since hashed page tables preserve page table locality.

TLB Prefetching Strategy

TLB prefetchers typically operate on TLB misses and store the prefetches into a TLB PB for

the reasons outlined in Section 2.4.1.1. Nonetheless, ATP could be also activated on TLB

hits and prefetch directly into the TLB.

Context Switches

ATP and SBFP leverage small structures that quickly warm up and are flushed upon context

switches, so they do not need to be tagged with address space identifiers. Note there is no

need for resetting the saturating counters of ATP and SBFP upon context switches.

3.7 Methodology

3.7.1 Simulation Infrastructure

We evaluate our proposals using ChampSim [13, 124], a detailed trace-based simulator that

models a 4-wide out-of-order processor. We extend ChampSim to simulate the operation of

a realistic page table walker used in x86-64 architectures, modeling the variant latency cost

of page walks, the page walk references to memory hierarchy, and the cache locality in page

walks, similar to prior work [188]. Specifically, we simulate a 4-level radix tree page table,

a hardware page table walker, and a 3-level split PSC. The page table walker supports up to

4 TLB misses, similar to Skylake µarchitecture [48], while one page walk can be initiated

per cycle. Regarding the cache hierarchy, we simulate 3 levels of caches, and hardware
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Component Description

ROB 256-entry

L1 iTLB 64-entry, 4-way, 1cc, 4-entry MSHR, LRU

L1 dTLB 64-entry, 4-way, 1cc, 4-entry MSHR, LRU

L2 TLB 1536-entry, 12-way, 8cc, 4-entry MSHR, LRU, 1 page walk / cycle

Page Structure 3-level Split PSC, 2cc.

Caches (PSCs) PML4: 2-entry, fully assoc; PDP: 4-entry, fully assoc; PD: 32-entry, 4-way

L1 iCache 32KB, 8-way, 1cc, 8-entry MSHR, LRU

L1 dCache 32KB, 8-way, 4cc, 8-entry MSHR, LRU, next line prefetcher

L2 Cache 256KB, 8-way, 8cc, 16-entry MSHR, LRU, ip stride prefetcher [60]

LLC 2MB, 16-way, 20cc, 32-entry MSHR, LRU

DRAM 4GB DDR4, tRP=tRCD=tCAS=11, 12.8 GB/s

Branch Predictor gshare, 16384-entry history table

Table 3.1: System simulation parameters.

prefetching is applied for the first two cache levels. Table 3.1 summarizes our baseline

experimental setup. Note that the baseline system does not apply TLB prefetching and

our evaluation primarily focuses on 4KB pages since they are still the norm in most virtual

memory systems. Finally, we also quantify the impact of large pages on the performance of

our proposals in Section 3.8.2.4.

The energy consumption measurements have been conducted using the CACTI 6.5 tool

[180] with 22nm technology. Section 3.8.2.5 presents the impact of our proposals on the

energy consumption of address translation.

3.7.2 Evaluated TLB Prefetchers

We implement and evaluate the previously proposed TLB prefetchers SP, DP, and ASP, de-

scribed in Sections 2.4.1.2 and 3.2 as well as the proposed ATP prefetcher. Table 3.2 presents

their configuration parameters. TLB prefetches are placed into a dedicated TLB buffer

named Prefetch Buffer (PB); Table 3.2 presents its configuration.
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Prefetch Engine / Component Description

Sequential Prefetcher (SP) –

Distance Prefetcher (DP) Prediction Table: 64-entry, 4-way, LRU policy

Arbitrary Stride Prefetcher (ASP) Prediction Table: 64-entry, 4-way, LRU policy

Stride Prefetcher (STP) –

H2 Prefetcher (H2P) –

Modified Arbitrary Stride Prefetcher (MASP) Prediction Table: 64-entry, 4-way, LRU policy

Agile TLB Prefetcher (ATP)
MASP’s Prediction Table: 64-entry, 4-way, LRU policy,

Fake Prefetch Buffer (FPB): 16-entry, fully assoc, FIFO policy

Sampling-Based Free TLB Prefetching (SBFP) FDT: 10-bit counters, Sampler: 64-entry, fully assoc, FIFO policy

Prefetch Buffer (PB) (16-64)-entry, fully assoc, FIFO policy

Table 3.2: Configuration parameters of the previously proposed TLB prefetchers (SP, DP, ASP), the
Agile TLB Prefetcher (ATP), the constituent TLB prefetch engines of ATP (STP, H2P, MASP), the
Sampling-Based Free TLB Prefetching (SBFP) module, and the Prefetch Buffer (PB) used for stor-
ing the prefetched PTEs. The parameters for ATP and SBFP have been empirically selected after
thorough sensitivity analysis.

3.7.3 Policies Exploiting PTE Locality

To demonstrate the benefits of exploiting page table locality while highlighting the benefits

of the proposed SBFP mechanism, we combine all considered TLB prefetchers (including

the proposed ATP prefetcher and its constituent prefetchers) with different scenarios that

exploit page table locality (including SBFP) and compare the results. Specifically, apart

from the proposed SBFP scheme, we consider the following scenarios: (i) free prefetching

is not exploited (NoFP), i.e., free prefetches are not stored in the PB, (ii) all free prefetches

are naively placed in the PB (NaiveFP), (iii) each TLB prefetcher uses its own optimal set

of free distances based on a static offline exploration that identifies the most useful free

distances per considered TLB prefetcher (StaticFP). To do so, we explore all possible sets

of free distances and measure the performance of each TLB prefetcher. Note that there

are 214 different sets of free distances because there are 14 possible free distances. Table

3.3 presents the optimal, performance-wise, set of statically selected free distances for all

considered TLB prefetchers. Finally, all scenarios that exploit PTE locality (including SBFP)

share the same PB with the TLB prefetchers.
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TLB Prefetcher Static Free Distances

SP {+1,+3,+5,+7}
DP {−2,−1,+1,+2}
ASP {−1,+1,+2}
STP {+1,+2}
H2P {+1,+2,+7}
MASP {+1,+2}
ATP {+1,+2}

Table 3.3: Set of statically selected free distances for the considered TLB prefetchers.

web road twitter kron urand

# Vertices (M) 50.6 23.9 61.6 134.2 134.2

# Edges (M) 1,949.4 58.3 1,468.4 2,111.6 2,147.4

Table 3.4: Input graphs for the GAP benchmark suite [74].

3.7.4 Workloads

Our evaluation uses an extensive set of workloads, spanning various benchmark suites.

Specifically, we consider workloads provided by Qualcomm for the 1st Contest on Value

Prediction (CVP-1) [19], all the benchmarks from SPEC CPU 2006 [136] and SPEC CPU

2017 [42] benchmark suites, and big memory footprint workloads included in the GAP [74]
benchmark suite and XSBench [45]. The Qualcomm set includes industrial workloads. The

SPEC CPU 2006 and SPEC CPU 2017 benchmark suites contain general-purpose applica-

tions. The GAP benchmark suite includes six graph processing kernels: (i) breadth-first

search (bfs), (ii) page rank (pr), (iii) connected components (cc) [253], (iv) betweenness

centrality (bc) [90], (v) triangle count (tc), and (vi) single-source shortest paths (sssp)

[194]. For each kernel, we consider five different input graphs featuring different sizes and

distributions of node degrees, presented in Table 3.4. Our evaluation reports results for
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Suite Benchmarks

SPEC CPU 2006
gcc, mcf, milc, cactusADM, GemsFDTD,

astar, sphinx3, xalancbmk, omnetpp

SPEC CPU 2017 mcf_s, xalancbmk_s, omnetpp_s

Qualcomm (QMM) 125 floating point, integer, and server traces

GAP

bfs.kron, bfs.road, cc.urand, cc.twitter,

bc.twitter, bc.kron, sssp.twitter, sssp.web,

tc.twitter, pr.twitter, pr.kron

XSBench xs.hash, xs.nuclide

Table 3.5: Complete set of workloads used for evaluation.

the two input graphs that produce the highest pressure on the TLB hierarchy per kernel (if

any). XSBench is evaluated using all different grid types (unionized, hash, nuclide), and we

present results for the two most TLB intensive ones. We refer to GAP and XSBench work-

loads as Big Data (BD) workloads because they have massive memory footprints [298]. For

the rest of this chapter, we use QMM, SPEC, and BD to refer to the Qualcomm, the SPEC

CPU 2006 and SPEC CPU 2017, and the GAP plus XSBench workloads, respectively.

Workloads with a TLB MPKI rate of at least 1 are considered TLB intensive and thus taken

into account in our evaluation. After the MPKI selection, our set of workloads includes 125

QMM workloads, 12 SPEC CPU workloads, and 13 BD workloads. All traces were obtained

using the SimPoint [218] methodology. Table 3.5 presents the complete set of workloads

used for evaluating our proposals.1

Each SPEC and BD workload runs 250 million warmup instructions and one billion

instructions are executed to measure the experimental results. For the QMM workloads we

use 50 million warmup instructions and 100 million instructions for measuring the results,

similar to prior work [196].

1Section 3.8.2.1 presents evaluation considering the entire SPEC CPU 2006 and SPEC CPU 2017 benchmark
suites to highlight that our proposals do not harm the performance of non TLB intensive workloads.

89



3. AGILE DATA TLB PREFETCHING

3.8 Experimental Campaign

This section presents our experimental campaign. Section 3.8.1 quantifies the benefits of

the Sampling-Based Free TLB Prefetching (SBFP) on prior and novel TLB prefetchers and

Section 3.8.2.1 focuses on Agile TLB Prefetcher (ATP) coupled with SBFP.

3.8.1 Impact of SBFP

To demonstrate that exploiting PTE locality can positively impact TLB prefetching while

highlighting the benefits of the proposed SBFP scheme, we combine all prior TLB prefetchers

(SP, DP, ASP) and new TLB prefetchers (STP, H2P, MASP, and ATP) with SBFP as well as

the NoFP, NaiveFP, and StaticFP scenarios presented in Section 3.7.3. Subsequent sections

examine the impact of these scenarios using multiple metrics and comment on the results,

providing the key conclusions of our experimental campaign.

3.8.1.1 TLB Coverage and Performance

Figures 3.12 and 3.13 quantify the impact of the different scenarios that apply free prefetch-

ing on TLB prefetching by presenting the TLB MPKI reduction and the geometric mean

speedups experienced by state-of-the-art and new TLB prefetchers, respectively. This set of

experiments assumes a 64-entry PB; we comment on the impact of different PB sizes in the

end of this section. The baseline system does not apply prefetching at any TLB level.

Coverage

Looking at Figure 3.12, we observe that all considered TLB prefetchers benefit from free

TLB prefetching since they achieve higher TLB MPKI reductions when they are combined

with the NaiveFP, StaticFP, and SBFP schemes than when free TLB prefetching is not ex-

ploited (NoFP). We observe this behavior because (i) the free prefetches provide PB hits

that eliminate demand page walks due to the reduction of TLB misses, and (ii) most of the

prefetch requests issued by the TLB prefetchers have already been prefetched for free, avoid-

ing prefetch page walks that waste useful resources (e.g., page table walker ports, energy).

Notably, SBFP provides significantly higher MPKI reduction rates than the other evaluated

scenarios (NoFP, NaiveFP, StaticFP) when combined with the different TLB prefetchers. For
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Figure 3.12: TLB MPKI reduction offered by different TLB prefetchers (SP, DP, ASP, STP, H2P, MASP,
ATP) when combined with different scenarios that exploit free TLB prefetching (NoFP, NaiveFP, Stat-
icFP, SBFP). Higher is better. The QMM, SPEC, and BD workloads experience 13.9, 3.4, and 38.9
average TLB MPKI in the baseline that does not apply TLB prefetching, respectively.

example, ATP coupled with SBFP reduces the TLB MPKI from 13.9 to 8.2 (41% reduction)

for the QMM workloads, from 3.4 to 1.46 (56% reduction) for the SPEC workloads, and

from 38.9 to 29.2 (25% reduction) for the BD workloads. Stress that the lowest TLB MPKI

reduction is achieved by the NoFP scenario that does not exploit free TLB prefetching; this

is the case for all considered TLB prefetchers. The reason for such behavior is that the NoFP

scenario does not store any of the free PTEs into the PB, thus missing the opportunity to

reduce the number of TLB misses.

Performance

The performance evaluation, presented in Figure 3.13, justifies the TLB MPKI reduction

rates and provides conclusions consistent with the ones presented above: (i) all TLB prefetch-

ers perform better when free prefetching is enabled compared to no free prefetching (NoFP),

and (ii) SBFP is the optimal choice between the scenarios that exploit free prefetching

(NaiveFP, StaticFP). The main conclusion drained out of this evaluation is that all TLB

prefetchers experience their highest (lowest) speedups when combined with SBFP (NoFP).

For instance, SP with SBFP improves performance by 5.6% over SP with NoFP for the SPEC
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Figure 3.13: Geometric mean speedups delivered when different TLB prefetchers (SP, DP, ASP, STP,
H2P, MASP, ATP) are combined with different scenarios that exploit free TLB prefetching (NoFP,
NaiveFP, StaticFP, SBFP). Higher is better.

workloads. Notably, MASP outperforms ASP with and without exploiting free prefetching

because MASP is capable of capturing more generic patterns than ASP. This verifies the value

of the modifications we propose in the design of ASP. Overall, ATP with SBFP yields a geo-

metric mean speedup of 16.2%, 11.1%, and 11.8% for the QMM, SPEC, and BD workloads,

respectively.

Best Performing Configuration

Next, we compare ATP coupled with SBFP, with the best prior TLB prefetcher (it is not

always the same across benchmark suites and scenarios that exploit free prefetching). ATP

with SBFP outperforms the best state-of-the-art TLB prefetcher with NoFP by 8.7%, 3.4%,

and 4.2% for the QMM, SPEC, and BD workloads, respectively. Moreover, ATP with SBFP

improves performance over the best state-of-the-art TLB prefetcher with NaiveFP by 4.6%,

3.4%, and 1.6% for the QMM, SPEC, and BD workloads, respectively. Finally, ATP with

SBFP outperforms the best prior TLB prefetcher with StaticFP by 5.4%, 1.4%, and 2.1% for

the QMM, SPEC, and BD workloads, respectively. The main takeaway of this comparison

is that ATP coupled with SBFP provides the overall best performance across all possible

combinations of prior TLB prefetchers and techniques that exploit free TLB prefetching.
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Figure 3.14: Normalized hit ratio of each free distance depicted with violin plots, across all consid-
ered workloads and TLB prefetchers.

Insights on SBFP’s Superior Performance

Figure 3.13 shows that the NaiveFP scenario outperforms the StaticFP scenario for the QMM

and BD workloads. For the SPEC workloads, the opposite behavior is observed. This hap-

pens because StaticFP always uses the overall most useful free distances based on static

offline exploration, but cannot use the non-selected free distances that are seldom benefi-

cial in specific execution phases. In these cases, NaiveFP outperforms StaticFP because it

fetches all available free PTEs into the PB. The main disadvantage of NaiveFP over StaticFP

is that it does not examine the usefulness of the free prefetches, resulting in suboptimal

performance enhancements due to PB thrashing. This analysis was the core inspiration for

the design of the SBFP scheme that identifies the most useful free PTEs per execution phase,

combining the advantages of NaiveFP and StaticFP.

To further demonstrate the benefits of SBFP over the other scenarios that exploit PTE

locality, Figure 3.14 illustrates the usefulness of the different free distances by presenting the

aggregated distribution of the normalized hit ratio per free distance among all prefetchers

and considered workloads. Free distances -2, -1, +1 and +2 produce the majority of the PB

hits due to free prefetching, verifying the quality of the statically selected free distances per

TLB prefetcher, presented in Table 3.3, because the optimal set of static free distances of

all TLB prefetchers is generally among the overall best free distances. However, some free

distances (e.g. -3, +3, -6) significantly contribute to the reduction of TLB misses for a large

subset of benchmarks. The key conclusion arising from this analysis is that different free
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distances are useful for different TLB prefetchers and for different execution phases, which

reveals the reason why SBFP exploits best the chance for free TLB prefetching compared to

the other scenarios that exploit PTE locality.

Impact of PB Size

To justify why we consider a 64-entry PB, we evaluate scenarios with various PB sizes.

Our experiments reveal that using PBs with 16 and 32 entries provides lower performance

compared to a 64-entry PB. Specifically, ATP coupled with SBFP experiences a 56% and

32% performance reduction using a PB with 16 and 32 entries for the SPEC workloads,

respectively. We observe similar behavior for the QMM and BD workloads. In addition,

larger PBs provide negligible performance improvements with respect to a 64-entry PB.

Besides, the PB lookup takes place on the critical path of accessing memory, thus, TLB

prefetching is fundamentally limited by the PB size. Therefore, a 64-entry PB is a good

design point. Subsequent sections consider a 64-entry PB, unless stated otherwise.

3.8.1.2 Cost of TLB prefetching

This section quantifies the impact of PTE locality exploitation on the cost of hardware TLB

prefetching. To do so, we present in Figure 3.15 the normalized number of memory ref-

erences triggered by page walks (demand plus prefetch) for all considered scenarios that

exploit free prefetching (NoFP, NaiveFP, StaticFP, SBFP) and TLB prefetchers (SP, DP, ASP,

STP, H2P, MASP, ATP), similar to Figure 3.3 in Section 3.3. The term memory reference refers

to a page walk reference that is served by the memory hierarchy (Section 2.4.1.1); note

that our evaluation takes into account cache locality in page walk memory references (Sec-

tion 3.7). The normalization factor, 100% in Figure 3.15, is the total number of memory

references for demand page walks without TLB prefetching.

Looking at Figure 3.15, we observe a large increase in page walk memory references

when free prefetching is not exploited (NoFP). This happens because all prefetches require

a prefetch page walk to fetch the requested PTEs into the PB and the reduction of the

demand page walks is smaller than the number of prefetch page walks introduced. The

only exception is the ASP prefetcher that introduces only 1% more page walk memory

references over the baseline that does not employ TLB prefetching; the state field of ASP’s

prediction is responsible for such low overhead, as explained in Section 3.3. However, ASP
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Figure 3.15: Normalized memory references due to page walks (demand and prefetch) across all
considered TLB prefetchers and scenarios that exploit page table locality. Lower is better.

combined with NoFP provides poor coverage and speedup results, as shown in Figures 3.12

and 3.13. Focusing on the BD workloads, SP, DP, ASP, STP, H2P, MASP, and ATP trigger 63%,

36%, 1%, 250%, 90%, 106%, and 81% additional memory references compared to the

scenario without TLB prefetching, respectively. We observe similar behavior for the SPEC

and QMM workloads.

All techniques that exploit free TLB prefetching significantly reduce the number of page

walk memory references because (i) the majority of the prefetches that would otherwise re-

quire a prefetch page walk are proactively fetched in the PB as free prefetches, and (ii) free

prefetches provide PB hits that save long-latency demand page walks. All considered TLB

prefetchers experience their highest reduction in terms of memory references when com-

bined with the SBFP scheme. This behavior occurs because SBFP saves more TLB misses

than NaiveFP and StaticFP, i.e., it eliminates more demand page walks, as presented in Fig-

ures 3.12 and 3.13. Overall, ATP with SBFP eliminates by 37%, 26%, and 5% the number

of memory references due to page walks compared to the scenario without TLB prefetching

for the QMM, SPEC, and BD workloads respectively. Finally, we observe a huge reduction

in memory references when free prefetching is exploited compared to the scenario with-

out free prefetching (NoFP). For instance, ATP with SBFP requires 38%, 52%, and 86%

fewer memory references for page walks compared to NoFP for the QMM, SPEC, and BD

workloads respectively.
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For readability, Figure 3.15 shows the normalized number of memory references trig-

gered by both demand and prefetch page walks. However, memory references that hit in

the cache hierarchy incur lower latency than the ones going to DRAM, and the latency cost

of a demand page walk is more critical than the latency of a prefetch page walk since the

former takes place in the critical path of accessing memory while the latter operates in the

background. Section 3.8.2.2 elaborates on these implications.

3.8.2 Evaluation of ATP coupled with SBFP

This section compares ATP coupled with SBFP against the state-of-the-art TLB prefetchers,

the constituent prefetchers of ATP, and other approaches that improve TLB performance

while showing the benefits of our proposal when large pages are used. All prefetchers use

a 64-entry PB for the reasons outlined in Section 3.8.1.1.

3.8.2.1 Performance Comparison

Comparison with Prior TLB Prefetchers

Figure 3.16 presents the performance of SP, DP, ASP, and ATP combined with SBFP for all

evaluated workloads; The evaluation of the QMM, BD, and SPEC workloads is presented

in Figure 3.16 (top), Figure 3.16 (middle), and Figure 3.16 (bottom), respectively. For the

SPEC workloads, we also show the geometric mean for the whole suite (GM_All in Figure

3.16), including also the non TLB intensive workloads. To demonstrate that our proposals

do not harm the performance of non TLB intensive workloads, Figure 3.17 presents the

performance impact on all SPEC workloads, no matter their TLB MPKI. Despite that most

of the non TLB intensive workloads from SPEC CPU suites exhibit around zero TLB MPKI

rates, there are some workloads (e.g. soplex, libquantum in Figure 3.17), that experience

around 0.9 TLB MPKI. These workloads are not included in our evaluation because they do

not reach the TLB MPKI threshold of 1, as explained in Section 3.7.4. However, applying

TLB prefetching for these workloads provides small performance benefits (<4%) due to

their modest TLB MPKI rates; this is the reason why GM_All is lower than GM_Inte in

Figures 3.16 (bottom) and Figure 3.17.

Focusing on the TLB intensive workloads, ATP combined with SBFP outperforms all

state-of-the-art TLB prefetchers, achieving geometric mean speedups over the best already
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suites. Higher is better.

proposed TLB prefetcher per benchmark suite of 8.7%, 3.4%, and 4.2% for the QMM (top),

SPEC (bottom), and BD (middle) workloads, respectively. Moreover, we observe that for

workloads such as xs.nuclide and sssp.twitter DP provides high performance gains

since they exhibit great distance correlation. For the xs.nuclide, DP outperforms our pro-

posal since ATP enables H2P when distance correlation is observed, although DP is capable

of detecting more complex distance patterns compared to H2P.

Deep Dive Into ATP+SBFP

Figure 3.13 demonstrates that ATP significantly outperforms its constituent prefetchers

(STP, H2P, MASP). This happens because ATP efficiently combines these prefetchers by se-

lecting the most appropriate prefetcher per TLB miss while disabling TLB prefetching during

execution phases that it is not useful. To validate our statements, Figure 3.18 shows the

fraction of TLB misses that ATP enables each TLB prefetcher or disables prefetching. When

none of the prefetchers is capable of capturing the TLB access patterns of the SPEC work-
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Figure 3.18: Fraction of TLB misses that ATP enables H2P, STP, MASP or disables TLB prefetching.

loads, ATP disables prefetching (e.g., xalan_s, mcf). For benchmarks with strided patterns

(e.g., milc), ATP enables mostly STP. MASP is enabled only when the TLB miss stream cor-

relates well with the PC (e.g., cactus, mcf_s). As explained in Section 3.5, ATP enables

H2P only when it is confident that H2P will produce useful prefetches because H2P uses

large distances that may pollute the PB content in case of inaccurate prefetches. Figure

3.18 reveals that the SPEC workloads are not benefited by the observed distance correla-

tion, thus ATP never enables H2P. Contrarily, a large number of the QMM and BD workloads

(e.g., sssp.twitter, xs.nuclide), experience TLB misses that exhibit great distance cor-

relation. Consequently, ATP enables H2P 12% and 34% of the time for the QMM and BD

workloads, respectively. Specifically, for xs.nuclide ATP selects H2P for prefetching 61%

of the time, explaining why DP outperforms ATP for this workload. This evaluation verifies

that combining ATP with SBFP successfully addresses all the findings of Section 3.3.

The next question we quantitatively answer is how much is the contribution of each

module (ATP, SBFP) on the performance enhancements of our proposal? To provide a clear

answer, Figure 3.19 presents a breakdown of the normalized number of PB hits provided by

our proposal across the considered benchmark suites, i.e., it shows the fraction of PB hits

provided by the ATP and the SBFP modules. Moreover, Figure 3.19 breaks down the PB hits

provided by ATP into three subcategories; PB hits provided by the constituent prefetchers of

ATP. On average, prefetch requests issued by ATP are responsible for 60%, 56%, and 41%

of the PB hits regarding the QMM, SPEC, and BD, respectively. SBFP’s contribution is also

significant since it is responsible for 40%, 44%, and 59% of the total PB hits for the QMM,

SPEC, and BD workloads, respectively. The main takeaway is that both ATP and SBFP play

an equally significant role in achieving significant performance enhancements.
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Figure 3.19: Percentage of PB hits provided by ATP (its constituent prefetchers) and SBFP.

3.8.2.2 Cost of TLB Prefetching

This section elaborates on the page walk footprint of our proposal, ATP combined with SBFP.

Figure 3.20 (up) presents the distribution of the normalized number of memory references

due to page walks (demand plus prefetch) out of the total number of memory references

for demand page walks without TLB prefetching, across all benchmark suites. For the QMM

workloads ATP with SBFP reduces memory references by 37%, while SP, DP, and ASP intro-

duce 33%, 19%, and 1% additional page walk memory references over the baseline that

does not apply TLB prefetching. We report similar results for the SPEC workloads. For the

BD workloads, we observe a lower reduction in page walk memory references than SPEC

and QMM workloads because the evaluated TLB prefetchers are unable to accurately detect

highly irregular TLB miss patterns.

The distribution presented in Figure 3.20 (up) provides a coarse representation of our

proposal’s page walk memory footprint. Figure 3.20 (down) provides a finer analysis by

presenting a breakdown of the average normalized number of page walk memory refer-

ences (presented as a bullet inside the violins of Figure 3.20 (up)). Specifically, Figure 3.20

(down) shows (i) a breakdown of the memory references caused by demand and prefetch

page walks, and (ii) a breakdown of the level of the memory hierarchy that serves the mem-

ory references of both demand and prefetch page walks. First, we observe that ATP with

SBFP provides the highest reduction in demand page walks for all considered suites since it

enables the right prefetcher per TLB miss, thus providing more PB hits than the prior TLB

prefetchers. In addition, ATP with SBFP triggers fewer memory references due to prefetch

page walks than the previously proposed TLB prefetchers because (i) it exploits SBFP to

prefetch PTEs that otherwise would need a separate prefetch page walk to be fetched into
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the PB, (ii) the throttling mechanism of ATP disables TLB prefetching during execution

phases that is not helpful, and (iii) for strided patterns the selection mechanism of ATP en-

ables STP, which uses small strides that are mostly served by free prefetches. Furthermore,

ATP combined with SBFP provides the highest reduction in memory references that require

accessing DRAM among the evaluated TLB prefetches. ATP with SBFP drastically reduces

the DRAM accesses of demand page walks, which provides great performance benefits, at

the cost of introducing a few DRAM accesses for prefetch page walks, which are not placed

in the critical path. The bottom line is that our proposal reduces the number of memory

references due to page walks, their cost, and the performance penalties they cause.
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caused by demand and prefetch page walks depending on which level of the memory hierarchy
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TLB Prefetcher Storage Budget

SP 4928 bits ≃ 0.60KB
DP 7808 bits ≃ 0.95KB
ASP 12160 bits ≃ 1.48KB
STP 4928 bits ≃ 0.60KB
H2P 4992 bits ≃ 0.61KB
MASP 16960 bits ≃ 1.47KB
ATP 18752 bits ≃ 1.68KB
SBFP 2700 bits ≃ 0.33KB

Table 3.6: Storage budget of the considered TLB prefetchers presented in Section 3.7.2. The storage
budgets of the TLB prefetchers include the storage of a 64-entry PB (4928 bits ≃ 0.60KB). The
budget of SBFP does not include a 64-entry PB since it is counted in the budget of ATP; our proposal
(ATP+SBFP) uses a shared PB.

3.8.2.3 Storage Budget

Table 3.6 presents the storage budget of all evaluated TLB prefetchers, including the storage

budget of a 64-entry PB. Each PB entry requires 36 bits for storing the virtual page number,

36 bits for the physical page number, and 5 attribute bits. Therefore, a 64-entry PB requires

0.60KB of storage to be implemented. Regarding the prefetchers, SP and STP are stateless.

H2P requires only 64 bits for storing the previously observed distance. ASP stores 60 bits

for the PC, 36 bits for the virtual page number, 15 bits for stride, and 2 bits for the state

field. DP stores distances of 15 bits. MASP stores 60 bits for the PC, 36 bits for the virtual

page number, and 15 bits for the corresponding stride. Each FPB entry of ATP stores 36

bits for the virtual page number. Therefore, considering a 64-entry PB, SP, DP, ASP, and

ATP require in total 0.60KB, 0.95KB, 1.48KB, and 1.68KB to be realized, respectively. ATP

is slightly more expensive than the previously proposed TLB prefetchers. Regarding the

storage cost of SBFP, each Sampler entry requires 36 bits for the virtual page number plus 4

bits for the corresponding free distance and the FDT uses a 10-bit counter per free distance.

Therefore, SBFP requires 0.33KB to be implemented. In total, ATP combined with SBFP

requires 2.01KB of storage to be implemented. The benefits of our proposal make this

minimal overhead affordable for a realistic design.
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3.8.2.4 Large Pages

To examine the impact of large pages on our proposal, we evaluate ATP combined with

SBFP and the state-of-the-art TLB prefetchers using a baseline with only 2MB pages, sim-

ilar to prior work [131, 188]. We observe significant TLB MPKI reduction for most of the

considered workloads when 2MB pages are used, although a few of them still experience

high TLB MPKI rates. For these workloads, we measured that ATP with SBFP reduces by

88% on average the TLB misses that 2MB pages cannot eliminate. Figure 3.21 shows the

performance of SP, DP, ASP, and ATP combined with SBFP for the 2MB scenario. The base-

line implies using 2MB pages without TLB prefetching. ATP with SBFP provides a geometric

mean speedup of 5.1%, 4.3%, and 9.9% for the QMM, SPEC, and BD workloads that still

experience significant TLB MPKI rates, respectively. Regarding the previously proposed TLB

prefetchers, SP, DP, and ASP provide negligible speedups, except DP which achieves notable

performance gains for the BD workloads since the TLB miss patterns of these workloads

exhibit great distance correlation. Note that the SPEC set of workloads contains only one

benchmark, mcf, since for the other SPEC workloads the 2MB pages eliminate the majority

of the observed TLB misses. Finally, the vast majority of the PB hits (89% on average) are

produced by free prefetches because free TLB prefetching with 2MB pages covers a larger

amount of memory compared to standard 4KB pages.
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Figure 3.22: Impact of ATP with SBFP and previously proposed TLB prefetchers (SP, DP, ASP) on the
dynamic energy consumption of address translation depicted with box plots. Lower is better.

3.8.2.5 Energy Consumption

This section quantifies the impact of our proposal on the dynamic energy consumed by

the virtual memory subsystem. To measure the baseline dynamic energy consumption of

address translation we take into account all accesses into the iTLB, dTLB, L2 TLB, MMU-

Caches as well as all page walk references to the memory hierarchy. When a TLB prefetcher

is used the dynamic energy is reduced by saving demand page walks due to PB hits but it is

also increased by the accesses in the PB, the Sampler, the FDT, and the triggered references

to memory hierarchy for prefetch page walks.

Figure 3.22 presents the dynamic energy consumed by address translation when ATP

coupled with SBFP and the state-of-the-art TLB prefetchers operate in the system. ATP with

SBFP lowers dynamic energy by 24%, 14.6%, and 1% for the QMM, SPEC, and BD work-

loads, respectively. SP, DP, and ASP increase the dynamic energy usage, especially for the

BD workloads. We remark on this behavior because our proposal saves demand page walks

by hitting in the PB and also decreases the number of prefetch page walks by leveraging the

SBFP module. Regarding the static energy consumption of address translation, negligible

impact is observed.
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3.8.3 Comparison with Other Approaches

This section compares ATP coupled with SBFP against other state-of-the-art techniques that

improve TLB performance. Figure 3.23 presents the experimental results.

ISO Storage

We compare our proposal against a system that does not employ prefetching for the TLB

hierarchy that, for fairness, has an enlarged L2 TLB. Specifically, the L2 TLB of this system is

augmented with 265 entries without affecting its access time, matching the storage budget

of ATP and SBFP (1.68KB + 0.33KB). Figure 3.23 shows that ATP combined with SBFP out-

performs this scenario by 14.7%, 9.8%, and 11.5% for the QMM, SPEC, and BD workloads,

respectively.

Free Prefetching into the TLB

Prior work [86] leverages PTE locality to fetch all free PTEs directly into the TLB upon

demand page walks. This approach does not use TLB prefetchers nor PBs, and it does

not consider selecting only the useful free PTEs per page walk. Figure 3.23 shows that

this approach (FP-TLB) reduces performance by 10.2% and 7.8% for the QMM and SPEC

workloads, respectively, due to the eviction of useful PTEs from the TLB. Our results are

consistent with prior work [85, 165] stating that placing all the free PTEs directly to TLB

may pollute its content. There is no previous work that stores prefetches directly into the

TLB using big data workloads. Our evaluation reveals that placing all free PTEs into the TLB

increases performance by 5.2% for the BD workloads. These workloads experience massive

TLB MPKI rates and thrash the TLB. Therefore, storing useful free PTEs in the TLB improves

performance for big data applications. Still, ATP coupled with SBFP outperforms this sce-

nario. Finally, we observe similar behavior when our proposal places all the prefetches, not

only the free prefetches, directly into the TLB.

Recency-based TLB Preloading [243]

This is a software approach that modifies the page table so that each PTE stores the virtual

page that is subsequently accessed. A fundamentally similar approach that only requires

µarchitectural modifications is Markov prefetching [158]. A hardware Markov prefetcher
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Figure 3.23: Performance comparison of ATP combined with SBFP with other approaches that im-
prove TLB performance. Higher is better.

consists of a prediction table indexed with the virtual page where each entry contains a

virtual page that is predicted to be accessed next, as described in Section 2.4.1.2. To ap-

proximate the behavior of Recency-based TLB Preloading, we enhance a Markov prefetcher

with a 64K-entry prediction table. Figure 3.23 reveals that our proposal outperforms this

approach by 4.7%, 4.4%, and 4.3% for the QMM, SPEC, and BD workloads, respectively.

This approach requires a very large hardware budget, infeasible for a realistic design.

TLB Coalescing

Coalescing approaches [219, 221, 270] rely on the contiguity of both virtual and physical

memory and provide limited benefits when contiguity is absent (e.g., due to fragmentation).

Contrarily, SBFP exploits virtual address space contiguity and ATP relies only on the memory

access patterns of the application. Therefore, our proposal is orthogonal to TLB coalescing.

However, we compare ATP coupled with SBFP against a scenario with perfect contiguity in

the virtual and physical memory where each TLB entry stores 8 adjacent PTEs. Figure 3.23

shows that this scenario improves performance by 12.9%, 11.8%, and 7.2% for the QMM,

SPEC, and BD workloads, respectively. This scenario delivers great performance since it

increases the TLB reach. Still, our proposal outperforms this scenario for the QMM and BD

workloads, while the difference for the SPEC workloads is negligible.
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Data Cache Prefetching

Cache prefetchers typically try to learn strides within 4KB physical pages [172, 195]. Con-

sequently, the number of observed strides is limited. TLB prefetchers try to capture varying

stride patterns since a prefetched page might be far from the page that triggered the TLB

miss. Therefore, using data cache prefetchers for data TLB prefetching intuitively limits

the TLB miss patterns that can be captured. To justify this observation, we convert Best-

Offset-Prefetcher (BOP) [195], a state-of-the-art data cache prefetcher, to prefetch for the

TLB miss stream. We select BOP because it bears some similarity to ATP coupled with SBFP

as both approaches try to identify the most useful strides per execution phase. We enrich

the set of deltas that BOP uses with negative ones (the original version of BOP uses only

positive deltas) to make sure that we do not underestimate its potential for TLB prefetching.

Figure 3.23 shows that when BOP is used as a TLB prefetcher, it improves performance

by 2.3%, 1.5%, and 3.1% for the QMM, SPEC, and BD workloads, respectively. ATP with

SBFP significantly outperforms BOP for all considered benchmark suites because BOP exam-

ines the effectiveness of a pre-defined set of deltas, thus it is unable to capture the varying

stride TLB miss patterns, while our proposal captures more generic patterns; ATP activates

the right TLB prefetcher per TLB miss and SBFP selects the most useful free PTEs per page

walk. Moreover, BOP checks one offset per learning round, thus it requires several rounds to

gain confidence for prefetching. In contrast, our proposal identifies faster the useful offsets

as ATP leverages the operation of the FPBs to enable the most appropriate TLB prefetcher

and SBFP learns the usefulness of all free PTEs concurrently. Finally, our proposal is more

aggressive than BOP; ATP enables one prefetcher per TLB miss and SBFP uses all offsets

that exceed a confidence threshold while BOP uses only the offset with the highest score.

Prefetched Address Translation [188]

This work [188] proposes ASAP, a hardware scheme that lowers the page walk latency using

direct indexing to prefetch deeper levels of the radix tree page table. Figure 3.23 shows

that ASAP improves performance by 2.1%, 1.8%, and 4.5% for the QMM, SPEC, and BD

workloads, respectively. ASAP provides important benefits when the MMU-Caches display

low hit rates, but for workloads like SPEC and QMM which experience high MMU-Cache

hit rates, its potential is limited. For the BD workloads, which have lower MMU-Cache hit

107



3. AGILE DATA TLB PREFETCHING

rates, ASAP provides significant performance benefits.

Combining ATP, SBFP, and ASAP

Hardware TLB prefetching is orthogonal to techniques aimed at lowering the page walk

latency. Since ASAP lowers the latency cost of page walks, it can be also used to accelerate

the prefetch page walks of ATP. Figure 3.23 shows that combining ATP with SBFP and ASAP

improves geometric mean performance by 18.8%, 12.1%, and 16.6% for the QMM, SPEC,

and BD workloads, respectively. ASAP increases the speedups of our proposal since it re-

duces the latency cost of both demand and prefetch page walks, thus the prefetched PTEs

are fetched faster in the PB, improving the timeliness of TLB prefetching. To conclude, com-

bining ATP, SBFP, and ASAP is a promising solution to the address translation performance

bottleneck.

3.8.4 Interaction with OS Page Replacement Policy

As stated in Section 3.6, inaccurate TLB prefetches might harm the page replacement policy.

A prefetch is harmful to the page replacement policy when it sets the access bit of the

corresponding PTE, it is evicted from the PB without providing any hit, and it does not

belong to the active footprint of the application. We measure that only 1.7%, 0.9%, and

3.6% of the prefetch requests of ATP with SBFP are harmful to the page replacement policy

for the QMM, SPEC, and BD workloads. Therefore, we consider negligible the probability

of negatively affecting the page replacement policy. We observe a small number of harmful

prefetches because SBFP prefetches only the most useful free PTEs, while ATP dynamically

enables the right TLB prefetcher and disables prefetching when it is not confident for issuing

new prefetch requests. To avoid harming at all the page replacement policy, when a prefetch

is proved to be useless our proposal could trigger a page walk in the background to reset

the access bit of the corresponding translation in the page table. With this solution, the

number of correcting page walks would be negligible due to the small number of harmful

prefetches introduced by our proposal.1 The main conclusion is that our proposal has a

negligible impact on the page replacement policy.

1The correcting page walks could be issued only when the TLB MSHR is not full to avoid delaying any demand
or prefetch page walk.
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3.9 Related Work

On the Locality of the Page Table

Prior work has identified locality of the PTEs in the last level of the radix tree page table.

Pham et al. [219, 221] exploit this locality by modifying the TLB to increase its reach. These

works require both virtual and physical contiguity while the proposed SBFP scheme solely

exploits virtual contiguity. Liu et al. [183] use page table locality to increase the efficiency

of the TLB. Bhattacharjee et al. [86] propose a shared last-level TLB organization for multi-

core systems that fetch directly into the shared TLB the PTEs 1, 2, and 3 virtual pages away

from the currently missing virtual page. Their technique only operates at demand page

walks, without issuing prefetches that require prefetch page walks, and it targets multi-

core systems with a shared last-level TLB. Shin et al. [255] exploit this locality by fetching

all available PTEs for GPU applications. Wang [153] exploits page table locality to fetch

free PTEs into a TLB buffer only for demand page walks, without providing any concrete

implementation. Instead, we propose a practical implementation that dynamically exploits

free TLB prefetching through sampling for multiple TLB prefetchers, we take advantage of

page table locality for both demand and prefetch page walks, and our proposal improves

the performance of private per-core TLBs using CPU applications.

Other TLB Prefetching Schemes

Bhattacharjee et al. [85] propose two TLB prefetchers for multi-core systems, explained

in Section 2.4.1.2. Both TLB prefetchers target parallel applications. The first is a TLB

prefetching scheme that leverages TLB misses on common virtual pages among cores to

prefetch the translations of those pages into the TLBs structures of the rest of the cores. The

second TLB prefetcher exploits the DP prefetcher to save distance-predictable TLB misses

across cores. ATP could form the base for the second aforementioned scheme.

Reducing the TLB Miss Latency

One way to reduce the cost of TLB misses is by improving the performance of the MMU-

Caches [66, 82]. Another approach is the POM-TLB [241], a large L3 TLB stored in the

main memory that reduces the multiple memory references required by page walks to just

one reference. DVMT [51] reduces the cost of TLB misses by allowing the application to
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define the appropriate page table format so that fewer memory references are needed per

page walk. Finally, hashed page tables [118, 140, 259, 300] have been proposed to resolve

TLB misses faster than the radix page tables. Hardware TLB prefetching is an orthogonal

approach as it eliminates TLB misses by converting them into PB hits.

Speculation Techniques

In speculation-based approaches [52, 65, 132, 222, 296], a missing translation is predicted,

the processor continues executing instructions speculatively, and a validation page walk is

performed in the background to validate the predicted address translation so that the page

walk overlaps with useful work in case of correct speculation. Those approaches are affected

by the system state (OS, load, fragmentation) as they depend on allocating contiguous

virtual pages to contiguous physical pages to predict the missing address translations.

Increasing TLB Reach

Processor and OS vendors provide support for large pages [43] to increase TLB reach, as

explained in Section 2.3.3. Prior work focuses on combining base and large pages in a per-

formant and power-efficient way by using a single TLB [103, 212, 246] or separate TLBs

[167] per page size. While large pages increase TLB reach and reduce the number of page

walks, they are susceptible to performance issues when the OS cannot allocate such map-

pings (e.g., due to memory fragmentation) or when the hardware support for large pages

is limited with respect to the application needs. Several approaches try to bypass the lim-

itations of large pages [71, 110, 119, 130, 169, 204, 213, 219, 267, 270, 271]. These

approaches rely on leveraging the contiguity of mappings from the virtual to physical ad-

dress space. Sub-blocked TLBs [270], CoLT [221], and Cluster TLB [219] target low-degree

contiguity (e.g., 8 pages), Hybrid Coalescing [214] targets medium-degree contiguity (e.g.,

< 512 pages), while Direct Segments [71] and RMM [169] support single and multiple

mappings of unlimited contiguity, respectively. Haria et al. [132] uses identity mappings

for which the virtual address is the same as the physical address, and introduces support

for region-level devirtualized access validation. These schemes are orthogonal to hardware

TLB prefetching since they rely on explicit OS and hardware support to increase the effec-

tive capacity of the TLB while hardware TLB prefetching relies only on the memory access

patterns of the application without any OS involvement.
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Virtualization

In virtualized environments each guest TLB miss requires a 2D page walk which can cause

up to 24 memory references to be served [48]. Prior work [79, 120, 222] reduces the

address translation overheads in virtualized environments, although, these overheads are

still severe and undermine the performance of modern systems. Since the latency penalty of

a TLB miss in virtualized systems is higher than 1D page walk latencies, our proposal, ATP

coupled with SBFP, could potentially improve performance under virtualization, especially

when free prefetching is exploited. However, in this case, SBFP has to be exploited in a 2D

fashion which might incur additional complexity and logic overheads.

3.10 Summary

This chapter provides evidence that exploiting the locality in the last level of the radix

tree page table for TLB prefetching purposes has the potential to provide significant per-

formance and energy enhancements. To ameliorate the address translation performance

bottleneck, we propose the Sampling-Based Free TLB Prefetching (SBFP), a dynamic scheme

based on sampling that identifies and prefetches only the most useful free PTEs per page

walk, and the Agile TLB Prefetcher (ATP), a composite data TLB prefetcher comprised of

three low-cost engines while introducing adaptive selection and throttling schemes to en-

able the most appropriate TLB prefetcher per TLB miss and disable TLB prefetching when

required. Considering an extensive set of contemporary industrial, academic, and big data

workloads, we demonstrate that combining ATP with SBFP provides significant performance

enhancements while reducing the vast majority of the page walk references to the memory

hierarchy and the dynamic energy consumed by the virtual memory subsystem.

3.11 Future Work

The work presented in this chapter takes a fresh look at prefetching for the TLB (there

was a paucity of research in the domain for more than 10 years) by evaluating and charac-

terizing the previously proposed TLB prefetchers using academic and industrial workloads

while proposing two novel concepts, ATP and SBFP, that push the envelope of hardware
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TLB prefetching. However, there is still large room for improving the performance of hard-

ware TLB prefetching since the oracle TLB prefetcher, presented in Section 3.3, improves

geometric mean performance over ATP combined with SBFP by 33.3% (on average) across

all benchmarks evaluated in this study.

Next, we briefly present interesting future research directions in the domain.

ML-based TLB Prefetching

There is a large body of works that design hardware cache prefetchers based on known ML

algorithms [76, 80, 135, 182, 216, 230, 290]. However, there is no prior work examining

whether ML-based TLB prefetchers could accurately prefetch for the TLB miss stream.

VIVT Caches and TLB Prefetching

VIVT caches remove the TLB lookup from the critical path of accessing memory, as explained

in Section 2.3.3.2. The key advantage of VIVT caches is that they permit TLBs to scale

to larger sizes because the TLB lookup needs to be performed after the L1 cache lookup.

Consequently, sophisticated TLB prefetchers (including ML-based TLB prefetchers) can be

employed alongside the different TLB levels when VIVT caches are used.

Storage Medium for Prefetches and Replacement Policy

This potential research direction would answer whether the PB could be entirely removed

or shrink to smaller sizes by placing the TLB prefetches with high confidence directly into

the TLB hierarchy. What policy should be used for driving replacements in the PB? What

replacement policy should be used for the TLBs when there is no PB in the system? Should

a TLB replacement policy treat differently demand TLB entries and prefetched TLB entries?

TLB Prefetching Under Virtualization

This potential research would quantify the benefits of applying TLB prefetching in virtual-

ized environments since 2D page walks are much costlier than 1D page walks; 2D/1D page

walks can cause up to 24/4 additional memory references to obtain a requested address

translation entry.
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4
Markov-based Instruction TLB Prefetching

4.1 Introduction

The effort to reduce address translation overheads has typically targeted data accesses since

they constitute the overwhelming portion of the TLB misses in desktop, high performance

computing (HPC), and big data applications [82, 85, 86, 165, 167, 188, 214, 219, 221, 241,

243, 300]. The address translation cost of instruction accesses has been relatively neglected

due to historically small instruction footprints of applications. However, recent academic

and industrial studies [166, 209, 304] demonstrate that modern server and datacenter

applications feature not only large datasets, but also large code footprints owing to their

huge binaries and deep software stacks. As a result, these applications place tremendous

pressure on processor front-end structures (e.g., L1i, iTLB), compromising performance

due to unavoidable pipeline stalls. To make matters worse, the front-end performance

bottleneck is likely to be exacerbated since the instruction footprint of modern server and

datacenter applications is annually increasing within the 20-30% range [166], significantly

outpacing the growth in the front-end structure sizes.
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When it comes to instruction address translation, TLB pressure caused by massive code

working set sizes is amplified by contention in the L2 TLB,1 which is shared between in-

struction and data translations, as explained in Section 2.3.3.2. Instruction references evict

useful data translation entries from the TLB and vice versa, imposing additional perfor-

mance penalties. However, instruction TLB misses are more critical than data TLB misses

since instruction references are on the critical path of pipeline execution, while data TLB

misses can overlap independent instructions thanks to ILP and MLP in out-of-order cores,

partially hiding their latency costs. Indeed, a recent work [209] shows that instruction

TLB misses are a critical bottleneck in Facebook workloads. In addition, recent work from

Google [166, 200] demonstrates that their server and datacenter workloads experience

high pressure on front-end structures while highlighting that most of their applications ex-

hibit high instruction growth rates. The main takeaway is that instruction TLB misses are

a growing problem in servers and datacenters.

Surprisingly, minimal attention has been paid to the instruction address translation

costs of server and datacenter applications by the research community. Existing software

approaches comprise either compile-time techniques for code layout optimization [207]
or operating system schemes leveraging large pages [107, 177, 304]. On the hardware

side, there is no prior work specifically targeting the instruction address translation bottle-

neck. However, previously proposed hardware schemes, originally conceived to target data

TLB misses, could also be effective for eliminating instruction TLB misses. Incremental ap-

proaches try to increase TLB reach [103, 219, 221] but they have narrow applicability to the

instruction address translation problem since they are limited by coalescing opportunities

exposed by the application and the OS and may also introduce new security problems. Dis-

ruptive approaches [51, 169] call for an overhaul of the virtual memory subsystem, which

hinders their adoption and may bring up new security vulnerabilities. Finally, hardware

TLB prefetching [165], presented in Section 2.4.1.2, constitutes a fully legacy-preserving

µarchitectural technique that relies only on the memory access patterns of the application,

is independent of the system state, and does not disrupt the virtual memory subsystem.

However, (i) there is no previously proposed instruction TLB prefetcher, and (ii) the effec-

tiveness of prior data TLB prefetchers on prefetching for the instruction TLB miss stream

has never been analyzed.

1This chapter focuses on modern TLB hierarchies with two levels and uses TLB to refer to the L2 TLB, unless
stated otherwise, similar to all previous chapters.
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This work reveals that instruction address translation is an emerging performance bot-

tleneck in server applications because the large code footprints of these applications pres-

sure the TLB hierarchy, resulting in long-latency page walks for fetching the corresponding

address translations. To support this claim, we provide the first µarchitectural study that (i)

characterizes the TLB behavior of industrial server workloads, and (ii) provides evidence

that instruction address translation is a performance bottleneck in servers. Specifically, on a

suite of contemporary industrial server workloads, we find that over 40% of all TLB misses

are caused by instruction references. Our findings corroborate the conclusions of previous

industry works showing instruction TLB pressure to be a performance bottleneck in their

workloads [166, 200, 209].

To alleviate the instruction address translation bottleneck, we focus on hardware TLB

prefetching. First, we show that prior data TLB prefetchers, presented in Section 2.4.1.2,

are ineffective at capturing the TLB misses because (i) they correlate patterns with features

that are unable to provide accurate instruction TLB prefetches, and (ii) they use access

recency for choosing prefetch candidates which does not correlate well with instruction

TLB misses. When applied to instruction TLB prefetching, existing data TLB prefetchers

improve the performance on industrial server workloads by up to 1.6%, whereas the op-

portunity from oracle instruction TLB prefetching is 11.1%. Second, our analysis on the

instruction TLB miss behavior of industrial server workloads draws the following key find-

ings: (i) instruction TLB misses follow a skewed distribution, with a modest number of

virtual pages responsible for the majority of the misses, (ii) instruction TLB miss patterns

are mostly irregular while having limited spatial locality restricted to a small region around

the triggering miss, and (iii) the instruction TLB miss stream correlates well with the miss

frequency of instruction pages.

Furthermore, we examine the state-of-the-art instruction cache prefetchers presented

in the 1st Instruction Prefetching Championship (IPC-1) [32] and conclude that they, too,

are ineffective at prefetching for the instruction TLB miss stream. Instruction prefetchers

target the L1i cache and typically find the needed cache blocks in the L2C or the LLC [117,

233], which means that they are tuned for relatively short prefetch distances. Meanwhile,

instruction TLB misses result in page walks that cause serialized accesses to the memory

hierarchy. Depending on the memory hierarchy level where these accesses are served, the

page walk can take from tens to hundreds of cycles, which cannot always be covered by

instruction cache prefetchers.
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Figure 4.1: Morrigan integrated into a modern µarchitecture.

This chapter introduces Morrigan, a composite µarchitectural TLB prefetcher for instruc-

tion accesses whose design is inspired by our analysis findings. To the best of our knowl-

edge, this is the first work to characterize instruction TLB misses and the first instruction

TLB prefetcher. Morrigan is composed of two complementary prefetch engines. The first

module is the Irregular Instruction TLB Prefetcher (IRIP), an ensemble of four prediction

tables that efficiently build and store variable length Markov chains from the instruction

TLB miss stream. IRIP is enhanced with a new replacement policy, named Random-Least-

Frequently-Used (RLFU), that drives replacements based on a frequency stack of instruction

TLB misses. RLFU uses randomness to avoid evicting recently installed but not yet fre-

quently accessed entries, thus efficiently accommodating changes in the instruction access

patterns, e.g., due to phase-based behavior. The second module of Morrigan is the Small

Delta Prefetcher (SDP), a sequential prefetcher activated when the IRIP module is unable to

produce new prefetches. Finally, both IRIP and SDP exploit page table locality, presented

in Section 3.1, to perform cost-effective spatial prefetching at zero cost. Figure 4.1 depicts

Morrigan (and its constituent prefetchers) integrated into a modern µarchtecture.

In summary, this chapter makes the following contributions:

• We provide the first study on instruction TLB prefetching using a set of 45 industrial

server workloads provided by Qualcomm for the 1st Contest on Value Prediction (CVP-

1) [19]. Key conclusions of the study are that (i) state-of-the-art designs of data TLB

prefetchers, presented in Section 2.4.1.2, are unable to cover instruction TLB misses,

and (ii) L1i cache prefetchers are ineffective at eliminating instruction TLB misses.
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• We reveal that instruction TLB misses (i) follow a skewed distribution, with a modest

number of instruction pages responsible for the majority of the instruction TLB misses,

and (ii) have spatial locality limited to a small region around the triggering miss.

• We propose Morrigan, a novel instruction TLB prefetcher composed of two specialized

prefetch engines: (i) Irregular Instruction TLB Prefetcher (IRIP), a novel Markov-based

prefetching module that leverages a new frequency-based replacement policy, named

Random-Least-Frequently-Used (RLFU), to manage its internal state, and (ii) Small

Delta Prefetcher (SDP), an enhanced prefetcher that uses small strides for prefetching.

• Across a set of 45 contemporary industrial server workloads [19, 32], Morrigan pro-

vides a geometric mean speedup of 7.6% and reduces the references to the memory

hierarchy due to demand page walks for instructions by 69% over a baseline that does

not employ instruction TLB prefetching.

4.2 Background

All necessary background information about architectural support for virtual memory sys-

tems and hardware TLB prefetching are presented in Sections 2.3.3 and 2.4, respectively.

This section builds on top of the concepts presented in Sections 2.3.3 and 2.4, thus under-

standing these concepts is a prerequisite for following the rest of this chapter.

This chapter focuses on x86-64 architectures which constitute the dominant processor

architecture deployed in today’s datacenters [68] and considers a system with a 2-level TLB

hierarchy, a 4-level radix tree page table, MMU-Caches with 3 levels (called Page Structure

Caches (PSCs) in x86-64 architectures), and a 3-level cache hierarchy, similar to Figure 2.20

in Section 2.4. In addition, it considers the most common scenario, described in Section 2.4,

where TLB prefetching is solely applied for the L2 TLB, and the prefetched PTEs are placed

into a dedicated TLB buffer, named Prefetch Buffer (PB). The only difference compared

to Section 3.2 is that the TLB prefetcher is activated upon L2 TLB misses for instruction

accesses while there is no prefetching happening upon L2 TLB misses for data references.

For the rest of this chapter, we use TLB prefetcher to refer to an L2 TLB prefetcher for in-

struction accesses, unless stated otherwise. Finally, this chapter uses the concept of free TLB

prefetching that exploits the locality in the last level of the radix tree page table, presented

in Section 3.2.1, to perform cost-effective spatial instruction TLB prefetching.
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Figure 4.2: Instruction TLB MPKI of Java server workloads from the Java DaCapo [89] and Java
Renaissance [224] benchmark suites.

4.3 Motivation

This section elaborates on the front-end bottleneck of servers and motivates the need for

new approaches that alleviate the instruction address translation overheads, highlighting

the potential performance gains of applying instruction TLB prefetching.

4.3.1 Front-end Bottleneck

Modern server workloads have massive instruction working sets that span many levels of the

software stack, making the front-end of the processor a major performance pain point [117].
Indeed, recent work from Google [166, 200] demonstrates that their server workloads face

severe problems due to pressure on front-end structures. Moreover, they highlight that the

front-end bottleneck is increasing, since most of these server applications exhibit high in-

struction growth rates (∼20-30% per year), outpacing the growth in the instruction cache

and TLB sizes. Specifically, Kanev et al. [166] reveal that the front-end stalls of the Google

server workloads account for 15-30% of pipeline slots, with many workloads being starved

for instructions for 5-10% of cycles. Similarly, another recent work [209] reveals that Face-

book server workloads experience serious performance bottlenecks due to front-end stalls

mostly caused by instruction TLB misses.

To justify that instruction address translation is a significant bottleneck in server appli-

cations, we analyze the instruction TLB behavior of server applications from the (i) Java

DaCapo suite [89] (cassandra, tomcat, avrora, tradesoap, xalan), and (ii) Java Re-

naissance suite [224] (http, chirper). We run these Java server applications on an Intel

Skylake CPU with a 1536-entry TLB, and gathered performance counters associated with

the instruction TLB accesses using the perf utility [37].
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Figure 4.2 presents the instruction TLB MPKI rates of these workloads; note that TLB

refers to L2 TLB, as stated in Section 4.2. For this experiment, we enable the Transparent

Huge Page support [43] to use 2MB pages for data accesses while mapping the code pages

into 2MB pages using libhugetlbfs [46] since there is no transparent way to map code pages

into large pages today; Section 4.5 elaborates on the implications of using large pages for

code. We observe that, even with large pages enabled, these applications experience high

instruction TLB MPKI rates that range between 0.6 and 2.1, which results in over 5% of

their execution cycles spent in instruction TLB miss handling.

Intuitively, the increasing instruction footprint of server applications affects the perfor-

mance of the iTLB as well as the L2 TLB, since more instruction page table entries (PTEs)

must be allocated to map the instruction working set of the applications. Therefore, the iTLB

experiences high MPKI rates and, as a result, more requests for instruction address trans-

lations are sent to the L2 TLB. Since the L2 TLB contains both data and instruction PTEs,

there is increasing contention between them. Higher contention leads to more frequent

TLB misses that must be resolved through a long-latency page walk. However, instruction

TLB misses are more critical than data TLB misses because instruction references are on

the critical path of execution, while data misses can overlap the execution of independent

instructions in out-of-order processors. This is the reason why processor vendors (i) employ

larger iTLBs than dTLBs (e.g., Intel’s Skylake 2018 chips have a 128-entry (8-way) iTLB and

a 64-entry (4-way) dTLB [48]), and (ii) keep increasing the L2 TLB size – from a 512-entry

L2 TLB for Sandy Bridge [40] to a 1024-entry L2 TLB for Haswell [28], and a 1536-entry

L2 TLB for Coffee Lake [14].

4.3.2 Analyzing Industrial Server Workloads

To validate the observations presented in Section 4.3.1, this section analyzes the L1i cache

and TLB behavior of 45 industrial server workloads provided by Qualcomm for the 1st Con-

test on Value Prediction (CVP-1) [19] and the 1st Instruction Prefetching Championship

(IPC-1) [32]. The Qualcomm server workloads were also used in recent works on TLB

management [196, 284]. We further study the SPEC CPU 2006 [41] and SPEC CPU 2017

[42] benchmark suites to demonstrate that HPC applications have tiny code footprints. For

the rest of this chapter, we use QMM and SPEC to refer to the Qualcomm workloads, and

the SPEC CPU 2006 and SPEC CPU 2017 workloads, respectively. This motivational analy-
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Figure 4.3: Average instruction MPKI (iMPKI) for front-end structures (L1i cache, iTLB, L2 TLB)
across the QMM and SPEC suites. The L2 TLB iMPKI considers only the instruction L2 TLB misses.

sis is conducted using an enhanced version of the ChampSim simulator [13, 124], similar to

Chapter 3. Finally, Section 4.5 explains in detail our simulation infrastructure, experimental

setup, and the considered workloads.

Figure 4.3 presents the average MPKI rates of the L1i cache, the iTLB, and the L2 TLB

(considering only the instruction misses) for the SPEC and the QMM server workloads. The

main conclusions arising from Figure 4.3 are: (i) the QMM server workloads experience an

order of magnitude more instruction misses in the three hardware structures (L1i, iTLB, L2

TLB) compared to the SPEC workloads, corroborating the conclusions of prior industrial

works from Google [166, 200], presented in Section 4.3.1, and (ii) the instruction L2 TLB

MPKI rates of the QMM server workloads are similar to the ones of the Java DaCapo and

Java Renaissance workloads, presented in Section 4.3.1.

Focusing on the QMM server workloads, we measured the fraction of the L2 TLB misses

that are caused by instruction and data references. We found that the instruction TLB misses

constitute 41.6%, on average, of the total TLB misses (the rest 58.4% are data TLB misses).

We further measured that the average page walk latency of instruction TLB misses and data

TLB misses is 69 cycles and 112 cycles, respectively. Higher page walk latency is observed

for the data TLB misses because the data footprint of the QMM server workloads is larger

than their instruction footprint, thus, data page walks experience worse cache locality than

the instruction page walks, resulting in higher page walk latency costs. However, unlike

data TLB misses – whose latency can be partially hidden by exploiting ILP and MLP in

out-of-order cores – instruction TLB misses cause unavoidable pipeline stalls. Therefore,

instruction TLB misses constitute an important performance bottleneck in server workloads.
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Figure 4.4: Cycles spent serving instruction TLB accesses across all QMM server workloads.

Intel’s VTune profiler [21, 22, 47, 106] considers instruction address translation as a

bottleneck when the stall cycles due to instruction TLB accesses represent more than 5%

of the total execution cycles. Figure 4.4 shows the cycles spent serving instruction TLB

accesses as a percentage of the total execution cycles for the QMM server workloads. We

observe that the QMM server workloads spend 6.6%-11.7% of their total execution cycles

serving instruction TLB requests, exceeding the 5% threshold. The main takeaway is that

instruction address translation is a significant bottleneck for the QMM server workloads.

4.3.3 Understanding the Instruction TLB Misses

This section examines the behavior and the properties of the instruction TLB misses ex-

perienced by the QMM server workloads. To do so, it considers different metrics to draw

conclusions capable of motivating the design of a novel instruction TLB prefetching module.

Delta Distribution

Figure 4.5 depicts the accumulative distribution of deltas (absolute values) between virtual

pages that produce consecutive instruction TLB misses for the QMM server workloads in

order of increasing deltas. While we observe a wide distribution of deltas, we note that

small deltas occur frequently; deltas from 1 to 10 account for 19% of the total deltas.

Finding 1. Instruction TLB misses have only limited spatial locality mostly restricted to a

small region around the triggering miss.
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Figure 4.5: Accumulative distribution of deltas (absolute values) between pages that produce con-
secutive instruction TLB misses across all considered QMM server workloads.

Distribution of Instruction TLB Misses

Figure 4.6 plots the accumulative distribution of instruction TLB misses per page in order of

decreasing page occurrence frequency, considering a set of four representative QMM server

workloads. The rest of the QMM server workloads follow a distribution that is either close

or in between the ones presented in Figure 4.6, thus not plotted for readability. Looking at

Figure 4.6, it can be observed that a small number of instruction pages is responsible for

a significant fraction of all instruction TLB misses. Specifically, 400-800 instruction pages

are responsible for 90% of the instruction TLB misses across all QMM server workloads.

Finding 2. Most instruction TLB misses can be attributed to a modest number of pages.

Identifying Chains of Instruction TLB Misses

This section is primarily focused on answering whether the instruction TLB misses of the

QMM server workloads exhibit chaining behavior, i.e., occur in a specific order. Secondly,

it quantifies how often such chaining behavior occurs. To provide a clear answer to these

questions, we define successor page as a page immediately following a given page in the
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Figure 4.6: Instruction pages that produce at least one TLB miss, sorted by TLB miss frequency.

instruction TLB miss stream.1 Figure 4.7 shows a breakdown of the average number of

successors per each instruction page that missed in the TLB, across all QMM server work-

loads. It can be observed that (i) a significant fraction of instruction pages has only 1 or

2 successor pages, (ii) the percentage of instruction pages that have up to 4 and up to 8

successor pages is also large, and (iii) only a small number of instruction pages has more

than 8 successor pages.

Figure 4.7 reveals that a big fraction of the instruction pages has more than 2 and up to

8 successors, taking into account all instruction pages that miss in the TLB. To alleviate the

instruction address translation bottleneck, it is natural to mainly focus on the instruction

pages that miss the most in the TLB. Figure 4.8 shows the probability of accessing a specific

successor page for the top 50 instruction pages that miss the most in the TLB, across all QMM

server workloads. On average, 51% of the time the most-frequent successor is accessed after

an instruction TLB miss, while 21% and 11% of the time the same second and third most-

frequent successors are accessed after a miss, respectively. The remaining 17% of the time,

the access after an instruction TLB miss is to a less-frequent successor.

Finding 3. Instruction pages that miss frequently in the TLB have only a few likely successor

pages whose reference probability is high.

1Page Y is a successor of page X if an instruction TLB miss on page X is immediately followed by an instruction
TLB miss on page Y.
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Figure 4.7: Number of successor pages per instruction page that misses in the TLB, across all con-
sidered QMM server workloads.
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Figure 4.8: Probability of accessing the same successor page after an instruction TLB miss for a given
instruction page, across all QMM server workloads.

4.3.4 Can Existing data TLB Prefetchers Help?

This section quantitatively answers whether previously proposed data TLB prefetchers can

capture the instruction TLB miss patterns of server workloads. To do so, we measure the

effectiveness of SP, ASP, DP, and MP, presented in Section 2.4.1.2, at prefetching for the

instruction TLB miss stream of the QMM server workloads. For this evaluation, we set the

configuration parameters of each data TLB prefetcher as proposed in the original papers;

Section 4.5.2 presents their configuration. Finally, all evaluated TLB prefetchers store the

prefetched PTEs into a 64-entry PB that uses the FIFO replacement policy, similar to Chapter

3, and new prefetches are issued upon instruction TLB misses, as explained in Section 4.2.
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Figure 4.9 illustrates the performance of the existing data TLB prefetchers (SP, DP, ASP,

MP) when prefetching for the instruction TLB miss stream of the QMM server workloads,

including the performance of an idealized scenario; a Perfect TLB for instruction accesses

where all instruction TLB lookups are hits (Perfect L2 TLB (inst) in Figure 4.9), thus there

are no page walks due to instruction references happening in the system. This ideal scenario

quantifies the upper bound for performance improvement by optimizing TLB operation for

instruction references. Finally, all speedups presented in Figure 4.9 are computed over a

baseline that does not apply TLB prefetching.

Looking at Figure 4.9, we observe that the ideal scenario (Perfect L2 TLB (inst)) de-

livers the highest performance enhancements among the evaluated schemes. Specifically,

Perfect L2 TLB (inst) delivers a geometric mean speedup of 11.1% across all QMM server

workloads. Meanwhile, the previously proposed data TLB prefetchers provide negligible

speedups because they are mainly unable to capture the instruction TLB miss patterns of

the QMM server workloads. SP improves geometric mean performance by 1.6% because

some of the instruction TLB miss patterns are sequential but it fails at capturing the com-

plex delta patterns, depicted in Figure 4.5, corroborating our 1st analysis finding, stating

that instruction TLB misses have only limited spatial locality mostly restricted to a small re-
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gion around the triggering miss. On the other hand, ASP and DP provide almost no speedup

over the baseline that does not apply TLB prefetching because they use features (PC and dis-

tances, respectively) that do not correlate well with the instruction TLB misses, thus, their

prediction tables experience massive conflicting accesses (96.3% and 93.7%, respectively).

Intuitively, we were expecting MP to provide good performance enhancements since Figure

4.7 shows that the instruction pages that miss in the TLB have a small number of successors

pages. Yet we observe that MP performs poorly, improving performance by a mere 0.2%

over the baseline that does not apply TLB prefetching.

To explain the poor performance of MP and examine its potential for instruction TLB

prefetching, we implement and evaluate two idealized versions of MP that are not feasible

for a realistic design. Both versions leverage an unbounded prediction table that accom-

modates all instruction pages that miss in the TLB. These idealized MP versions only differ

in the number of successor pages they can store per prediction table entry; the first version

maintains up to two successor pages per prediction table entry, and the other can store any

number of successor pages per prediction table entry. Our explorative evaluation revealed

that the unbounded MP with two and infinite successor pages per prediction table entry

deliver 7.9% and 10.3% geometric mean speedups, respectively.

There are three important conclusions from this study. First, increasing the number of

entries in the prediction table significantly improves MP’s performance–from 0.2% geomet-

ric mean speedup with the baseline configuration that uses a 128-entry prediction table

to 7.9% geometric mean speedup with an infinite number of prediction table entries. The

arising conclusion is that Markov-based prefetching has the potential to reduce the instruc-

tion TLB miss rates of the QMM server workloads. Second, our analysis indicates that the

replacement policy of MP is one of the reasons why MP does not improve performance with

practical prediction table sizes. Since MP uses the LRU policy we conclude that recency

is not a useful feature for driving replacement decisions. Finally, accommodating multiple

successors per prediction table entry, beyond just two, further increases the geometric mean

speedup from 7.9% to 10.3%, which approaches the performance of the idealized scenario

(11.1%) where all instruction references hit in the TLB, presented in Figure 4.9.

Finding 4. A Markov prefetcher has potential for instruction TLB prefetching but it requires

dynamically building variable length Markov chains out of the instruction TLB miss stream

in a storage-efficient manner and an effective replacement policy for its prediction table.
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4.3.5 Instruction Cache Prefetching

Modern L1i cache prefetchers are allowed to trigger instruction prefetches that cross 4KB

page boundaries [32]. When that happens, if the corresponding address translation is ab-

sent in the TLB, a page walk is triggered to fetch it from the page table. Therefore, L1i cache

prefetchers implicitly work as instruction TLB prefetchers; however, their effectiveness in

this role has not been analyzed.

To quantify how effective state-of-the-art L1i cache prefetchers are at prefetching for the

instruction TLB miss stream of the QMM server workloads, we consider the three top per-

formers of the IPC-1 contest [32]: EPI [235], FNL+MMA [245], and D-JOLT [24]. The IPC-

1 simulation infrastructure does not model instruction address translation, i.e., all L1i cache

prefetches that cross 4KB page boundaries are translated without cost. To consider the ad-

dress translation costs when applying beyond 4KB page boundaries L1i cache prefetching,

we extend the IPC-1 infrastructure to store in the TLB PB the PTEs of the pages where the

blocks of the beyond-page-boundaries L1i cache prefetches reside, essentially providing in-

struction TLB prefetches.

Our analysis indicates that the FNL+MMA prefetcher outperforms the other IPC-1 prefetch-

ers when address translation costs are taken into account, thus our motivational analysis
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focuses on this L1i cache prefetcher. Figure 4.10 presents the performance results of differ-

ent scenarios that consider the FNL+MMA prefetcher. Line FNL+MMA+TLB (FNL+MMA)

shows the measured performance of the L1i cache prefetcher when instruction address

translation is (is not) considered. Notably, when address translation is taken into account

(FNL+MMA+TLB), we observe significantly lower speedups than the ones reported in IPC-

1 contest (FNL+MMA). This performance degradation comes from the L1i cache prefetches

that cross 4KB page boundaries and fail to find the corresponding translation in the TLB

hierarchy, thus requiring long-latency page walks to fetch it from the page table. Such

prefetches hurt the timeliness of the FNL+MMA prefetcher and delay demand TLB accesses

by occupying the page table walker ports, resulting in poor performance gains. In addition,

we observe only a small reduction (29.6% on average) in demand instruction TLB misses

because FNL+MMA is unable to cover instruction TLB misses due to their poor timeliness

in the face of long-latency page walks that require serialized memory accesses. Therefore,

state-of-the-art L1i cache prefetchers require a smart instruction TLB prefetcher to effec-

tively cross 4KB page boundaries for prefetching.

Finding 5. L1i cache prefetchers are mainly ineffective at reducing instruction TLB misses

due to poor prefetching timeliness.

4.3.6 Putting Everything Together

Our motivational analysis provides evidence that instruction address translation is a per-

formance bottleneck in servers and reveals that there is potential for large performance en-

hancements by optimizing TLB operation for instruction references in server applications.

However, the design of existing data TLB prefetchers falls short at reducing the instruction

TLB misses of server applications. In addition, we demonstrate that Markov-based TLB

prefetching is a promising solution to the instruction address translation bottleneck, but

the reported improvements assume ideal and indefinitely large prediction tables, infeasible

for a realistic design. Applying Markov-based instruction TLB prefetching in the context

of a properly sized prediction table requires an adaptive and storage-efficient building of

Markov chains and an effective replacement policy that drives replacement decisions with-

out taking into account the access recency of instruction pages.
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4.4 Morrigan

To alleviate the instruction address translation performance bottleneck of server applica-

tions, this chapter proposes Morrigan,1 the first ever and the state-of-the-art µarchitectural

TLB prefetcher for instruction references. Morrigan is a fully legacy-preserving composite

prefetching scheme and does not disrupt the existing virtual memory subsystem. Morri-

gan is also synergistic with L1i cache prefetchers as it improves the timeliness of the L1i

prefetches that cross page boundaries.

4.4.1 Design

Morrigan is inspired by our analysis findings regarding the reuse and the locality of the

instruction TLB miss stream of industrial server applications, presented in Section 4.3, and

consists of two complementary prefetching modules: the Irregular Instruction TLB Prefetcher

(IRIP) which dynamically builds and stores Markov chains out of the instruction TLB miss

stream, and the Small Delta Prefetcher (SDP), an enhanced sequential prefetcher. Sections

4.4.1.1 and 4.4.1.2 present the IRIP and SDP modules, respectively. Finally, Section 4.4.2

explains in detail the operation of Morrigan.

4.4.1.1 Irregular Instruction TLB Prefetcher (IRIP)

IRIP Design

The IRIP prefetch engine is designed as a Markov prefetching module since our analysis

indicates that a Markov prefetcher has potential for instruction TLB prefetching (Finding

4, Section 4.3.4). Specifically, IRIP is an ensemble of four table-based Markov prefetchers

that efficiently build and store variable length Markov chains from the instruction TLB miss

stream. IRIP optimizes prefetching decisions by taking into account the variable number of

successor pages, as presented in Figure 4.7), of the instruction pages that miss in the TLB.

Designing the IRIP module as a monolithic Markov prefetcher with a single prediction

table and a fixed number of successors per prediction table entry, as the state-of-the-art MP

does (Section 2.4.1.2), results in suboptimal performance gains since it loses prefetching

opportunities, as we show in Section 4.6.3.

1Morrigan (also known as Morrígu) is the Irish goddess of destiny.
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Figure 4.11: Design of the PRT-S2 prediction table. VPN, Dij, and Cij refer to virtual page number,
predicted distance, and confidence counter, respectively.

The IRIP module employs four prediction tables, named PRT-S1, PRT-S2, PRT-S4, and

PRT-S8, that dynamically build a store variable length Markov chains from the instruction

TLB miss stream. Each prediction table entry stores up to a pre-defined number of succes-

sors; the PRT-S1, PRT-S2, PRT-S4, and PRT-S8 prediction tables accommodate instruction

pages that have one, two, up to four, and up to eight successor pages, respectively. In other

words, each entry of the prediction table PRT-Si can accommodate up to i successor pages,

where i ∈ {1,2, 4,8}.

Each prediction table (PRT-S1, PRT-S2, PRT-S4, PRT-S8) is realized as a set-associative

buffer and stores the virtual page number (VPN) of the missed instruction for indexing, s

prediction slots, and s confidence counters, one per prediction slot. For example, each PRT-

S2 entry has s=2 prediction slots and s=2 confidence counters. The only difference in the

design of the prediction tables is the number of prediction slots and confidence counters.

For this reason, Figure 4.11 presents the basic design of the PRT-S2 prediction table.

A naive PRT-S2 design would store the full VPN in each prediction slot (as the state-

of-the-art MP [165] does). However, such a design choice is expensive, storage-wise, since

each VPN requires 36 bits of state. To lower this storage cost, IRIP stores into the prediction

slots the distances between the current and the previous virtual pages that produced an

instruction TLB miss. This approach lowers the amount of storage for the prediction tables

without any performance loss.
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The confidence counters (Cij in Figure 4.11) associated with the prediction slots are

exploited in a two-fold manner: (i) to drive the replacement policy of the prediction slots,

i.e., when all the prediction slots are occupied and a new distance has to be placed in one

of these slots, the distance with the lowest confidence is replaced, and (ii) the distance

with the highest confidence is selected to apply spatial prefetching, leveraging the locality

in the last level of the radix tree page table, presented in Section 3.2.1. Specifically, on

prediction table hits (e.g., PRT-S2 hits in Figure 4.11), IRIP issues one prefetch request per

predicted distance of the hit entry. Each prefetch requires a prefetch page walk to fetch the

corresponding translation from the page table, as explained in Section 2.4.1.1. At the end

of a prefetch page walk, page table locality can be exploited to prefetch for free the PTEs

that share the cache line with the target PTE. However, prefetching all the free PTEs in all

prefetch page walks might harm performance by fetching a lot of inaccurate prefetches. To

mitigate this problem, IRIP prefetches cache-line adjacent PTEs only for the distance with

the highest confidence.

IRIP Operation

All IRIP prediction tables operate the same since the only difference in their design is the

number of prediction slots and confidence counters. Therefore, we focus on a single predic-

tion table to explain its operation. Figure 4.12 illustrates the operation of the IRIP module

on PRT-S2 hits coupled with an example that assumes an instruction TLB miss for virtual

page 0xA1. Initially, a PRT-S2 lookup takes place to determine if there is an entry corre-

sponding to virtual page 0xA1 1 . In the example, the PRT-S2 lookup experiences a hit.

Consequently, the predicted distances of the hit entry (17 and 2) are separately summed

with the currently missed page (0xA1) to generate new prefetch requests for pages 0xB2

and 0xA3, respectively 2 . In parallel, IRIP finds the predicted distance with the highest

confidence counter 3 . Since distance 2 has the highest confidence value, IRIP applies

spatial prefetching by leveraging page table locality for the prefetch 0xA3 (0xA1 + 2) 4 .

Specifically, at the end of the prefetch page walk for 0xA3, IRIP leverages page table locality

to also prefetch the PTEs adjacent to the PTE of 0xA3 5 . The next step updates the content

of the PRT-S2 table for future reuse. To do so, IRIP calculates the distance between the cur-

rently missed (0xA1) and previously missed (0xB5) virtual pages and stores the outcome

into a register 6 . Meanwhile, IRIP finds which of the predicted distances for the previously
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missed virtual page has the lowest confidence counter 7 . In this example, distance 666

has the lowest confidence, thus IRIP replaces it with the current distance while resetting

the corresponding confidence counter 8 . Finally, IRIP stores the currently missed virtual

page into the register holding the previously missed virtual page to be used on the next IRIP

operational cycle 9 .

When Morrigan operates, steps 7 and 8 take place only for the PRT-S8 table; for

PRT-S1, PRT-S2, and PRT-S4 Morrigan transfers the entry coupled with the new predicted

distance into a prediction table with more prediction slots per entry, to avoid loosing already

captured patterns. Section 4.4.2 explains in detail the operation of Morrigan, highlighting

the transferring of entries between the prediction tables of the IRIP module.

Updating the Confidence Counters. When a prefetch is proved to be accurate, i.e., it produces

a hit that eliminates a demand page walk and the confidence counter of the corresponding

prediction slot is incremented by 1, increasing the confidence for this prediction slot.
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Replacement Policy

A critical aspect of the IRIP design is the replacement policy of the prediction tables. While

previously proposed table-based TLB prefetchers, like MP [165], use the LRU replacement

policy, our motivational analysis, presented in Section 4.3.4, reveals that LRU does not

keep the most useful entries in the prediction tables because it is prone to lose track of

important entries. In addition, our analysis findings indicate that the miss frequency of

virtual pages is a good feature to correlate the instruction TLB miss stream. Therefore,

we employ a frequency-based replacement policy for all the prediction tables of the IRIP

module which (i) maintains a frequency stack of the instruction TLB misses to drive the

replacement of entries on prediction table conflicts, similar to the Least-Frequently-Used

(LFU) policy, and (ii) uses a random component that gives recently installed entries, which

have not yet accumulated a large number of hits, a chance to persist when a replacement

candidate is selected since it randomly selects for eviction one of the least frequently used

entries, not necessarily the least frequently used one. This policy gives IRIP the ability

to adjust to phase-based behavior in workloads. We refer to this policy as Random-Least-

Frequently-Used (RLFU). Finally, the complexity of RLFU is similar to the LRU policy.

Figure 4.13 depicts the operation of IRIP on PRT-S2 misses with an example that assumes

a fully populated PRT-S2 and an instruction TLB miss for virtual page 0xA1 which is not

stored into the PRT-S2. Consequently, IRIP needs to victimize a PRT-S2 entry to keep track

of the currently missed virtual page (0xA1). In practice, one of the five least frequently

accessed entries is randomly selected for replacement. The currently missed instruction

page is stored in the victim’s entry with cleared prediction slots and confidence counters.
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A problem with a frequency-based replacement policy is that it may be slow to adapt to

phase changes in application behavior (e.g., when a page causes frequent instruction TLB

misses in one phase but not in another). To avoid the associated performance pathologies,

Morrigan periodically resets the frequency stack to better identify instruction pages causing

the most instruction TLB misses in a given interval.

4.4.1.2 Small Delta Prefetcher (SDP)

The Small Delta Prefetcher (SDP) prefetches the PTE of the virtual page adjacent to the

missed virtual page, similar to SP, presented in Section 2.4.1.2. The only difference between

SP and SDP is that the latter exploits page table locality, presented in Section 3.2.1, to

prefetch all the adjacent PTEs within the target cache line. In this way, SDP captures the

majority of the small-strided instruction TLB miss patterns, effectively addressing our first

analysis finding (Finding 1 in Section 4.3.3).

To reveal the prefetching capabilities of SDP, we assume an instruction TLB miss for

virtual page 0xA7. First, SDP issues a prefetch request for page 0xA8 (0xA7+1). After the

completion of the prefetch page walk for page 0xA8, SDP prefetches all the PTEs that share

the cache line with the PTE of page 0xA8. Note that in this example, fetching the PTEs of

pages 0xA7 and 0xA8 requires two separate page walks since the PTE of 0xA7 resides in

the last position of a cache line (0xA7 & 0x07) while the PTE of 0xA8 is stored in the first

position within another cache line.

4.4.2 Operation of Morrigan

This section explains in detail the operation of Morrigan, considering the most common

scenario where the instruction TLB prefetcher is invoked on instruction TLB misses, and

the prefetched PTEs are stored into a Prefetch Buffer (PB), as described in Section 4.2.

Figure 4.14 illustrates step-by-step the operation of Morrigan. When an instruction TLB

miss occurs 1 , the requested translation is looked up in the PB 2 . On PB misses, a demand

page walk is initiated 3 to fetch the corresponding translation from the page table and

store it into the TLB 4 . On PB hits, the demand page walk is avoided, the corresponding

address translation entry is transferred from the PB to the TLB 5 , and in the background,

we increment the confidence counter of the prediction table entry that produced the PB hit

if the prefetch was produced by the IRIP module 6 .
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Morrigan is engaged in case of either PB hit or miss 7 . First, Morrigan looks up in

parallel all prediction tables (PRT-S1, PRT-S2, PRT-S4, PRT-S8) of the IRIP module 8 (step

1 in Figure 4.12). When there is a hit in one prediction table,1 Morrigan generates one

prefetch request per valid prediction slot of the hit entry 9 (step 2 in Figure 4.12) of

the corresponding prediction table. Before issuing new prefetch requests, Morrigan checks

whether the translations already reside in the PB 10 . For the prefetches that are already

1There is no duplication of entries in the prediction tables of the IRIP module, thus only one prediction table
hit might occur per activation of Morrigan.
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stored in the PB the corresponding prefetch requests are discarded 11 . For the rest, sepa-

rate prefetch page walks are initiated to fetch the address translation entries from the page

table 12 . At the end of the prefetch page walks, the corresponding PTEs are stored in

the PB 13 . Then, Morrigan leverages page table locality to apply lookahead prefetching

with depth 1 by fetching in the PB the adjacent PTEs that are transferred together with the

prefetched PTE into the cache hierarchy solely for the prefetch with the highest confidence

14 (steps 3 - 5 in Figure 4.12). When all the prediction tables of the IRIP module ex-

perience a miss, Morrigan needs to store the currently missed virtual page in one of the

IRIP’s prediction tables. Since this page does not have any valid prediction, it is always

placed in the PRT-S1 table 15 but it might be moved into another prediction table if fu-

ture instruction TLB misses reveal that this page has multiple successors. If PRT-S1 is full,

Morrigan uses the RLFU policy to find a victim entry. Therefore, on prediction table misses

Morrigan is unable to produce prefetch requests based on the IRIP module. At this point,

SDP is activated and issues prefetch requests 16 by exploiting page table locality, which

are eventually stored into the PB 17 . SDP is enabled only when all IRIP prediction tables

experience a miss because SDP has lower prefetching scope and accuracy than IRIP. Follow-

ing this strategy, Morrigan does not lose any potential for performance improvement since

it produces new prefetch requests on every instruction TLB miss.

In case of either hit or miss in the prediction tables of the IRIP module, Morrigan in-

serts the new predicted distance in one of the prediction slots of the IRIP prediction table

entry that accommodates the previously missed virtual page 18 . If the previously missed

page resides in one of PRT-S1, PRT-S2, or PRT-S4 tables 19 and its prediction slots are

fully occupied 20 , then instead of victimizing one of its prediction slots, Morrigan simply

transfers this entry into the next IRIP prediction table that has more prediction slots 21 ; if

it is full, Morrigan uses the RLFU replacement policy to open up space for the transferred

entry 22 . Next, this entry is removed from the previous prediction table 23 to ensure that

there is no duplication of entries in the prediction tables. Notably, if the previously missed

instruction page resides in the PRT-S8 table and the prediction slots are fully occupied 24 ,

the new distance is placed into the prediction slot that has the lowest confidence counter

25 . Stress that in step 19 we do not search all IRIP prediction tables to find the previously

missed instruction page, but we use a register to store the identifier of the table that stores

the previously missed instruction page.
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4.4.3 Additional Aspects

Operation on SMT Cores

Morrigan can operate under SMT colocation by sharing the IRIP module among the threads.

To do so, it only requires a different register per thread holding the virtual page number

that produced the previous instruction TLB miss (step 9 , Figure 4.12) to ensure that each

thread builds its own Markov chains without intermixing. Finally, the SDP module does

not need any modification to operate under SMT colocation since it is a stateless prefetcher

that does not need to differentiate among threads.

Synergy with L1i Cache Prefetching

Morrigan is complementary to L1i cache prefetchers because it prefetches instruction PTEs,

thus improving the timeliness of L1i cache prefetches that go beyond page boundaries by

avoiding long-latency page walks (Section 4.3.5). Section 4.6.5 quantifies the performance

gains of using Morrigan to improve the timeliness of a state-of-the-art L1i cache prefetcher.

Multiple Page Sizes

Sections 4.4.1 and 4.4.2 focus on a single page size to describe the design and operation of

Morrigan. This is not a limitation of the design as multiple page sizes are supported without

any modification. The page size is known only after address translation, thus, Morrigan

can issue two prefetches per request to target 4KB and 2MB pages. Once the page size

is known, Morrigan discards the outcome of the prefetch page walk for the mismatched

page size. This approach does not add complexity to the design since modern architectures

support speculative page walks [215].

Page Replacement Policy and TLB Shootdowns

Morrigan sets the access bit of all prefetched pages since the x86 memory consistency

model dictates that all TLB prefetches are obliged to do so [48]. Therefore, Morrigan does

not complicate TLB shootdowns [53, 57, 88, 181, 288] because the information about the

prefetched instruction PTEs is conveyed to the OS as usual. Regarding the impact on the

page replacement policy, a prefetch is harmful to the page replacement policy if it is evicted
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from the TLB PB without providing any hit and does not belong to the active footprint of the

application. Morrigan issues prefetches based on the control-flow behavior and does not

permit faulting prefetches, thus the probability of negatively affecting the page replacement

policy is negligible. To annihilate this probability, Morrigan could issue a correcting page

walk to reset the access bit of the PTEs that are evicted from the PB without providing any

hit. These correcting page walks could be issued when the TLB MSHR is not full to avoid

delaying any other page walk, as explained in Section 3.8.4.

Context Switches

The prediction tables of the IRIP module must be flushed upon a context switch. Their small

sizes ensure that, following a context switch, they are quickly refilled. SDP is stateless; as

such, it requires no action on a context switch.

Different Architectures

This thesis focuses on x86 architectures; however, architectural support for virtual memory

used in x86 architectures [5, 30] is similar to other architectures (e.g., ARM [9] and RISC-

V [38]). The main takeaway is that Morrigan would be applicable to these architectures.

Page Table Designs

Morrigan is compatible with any multi-level radix tree page table design. Previous sections

mainly focus on 4-level radix tree page tables but Morrigan is also compatible with 5-level

radix tree page tables [1], and may deliver higher performance benefits because the extra

page table level might increase the page walk latency. Alternatively, if a hashed page table

[118, 140, 259, 300] is employed, Morrigan would operate the same since hashed page

tables preserve page table locality.

TLB Prefetching Strategy

TLB prefetching schemes are typically engaged on TLB misses and store the prefetched PTEs

into a PB, as explained in Section 2.4.1.1. Our analysis indicates that these two strategies

have a positive effect on performance. Nonetheless, Morrigan could be also activated on

TLB hits and store prefetched PTEs directly into the TLB.
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Component Description

ROB 352-entry

L1 iTLB 128-entry, 8-way, 1cc, 4-entry MSHR, LRU

L1 dTLB 64-entry, 4-way, 1cc, 4-entry MSHR, LRU

L2 TLB 1536-entry, 6-way, 8cc, 4-entry MSHR, LRU, 1 page walk / cycle

Page Structure 3-level Split PSC, 2cc.

Caches (PSCs) PML4: 2-entry, fully assoc; PDP: 4-entry, fully assoc; PD: 32-entry, 4-way

L1 iCache 32KB, 8-way, 4cc, 8-entry MSHR, LRU, next line prefetcher

L1 dCache 32KB, 8-way, 4cc, 8-entry MSHR, LRU, next line prefetcher

L2 Cache 512KB, 8-way, 8cc, 32-entry MSHR, LRU, SPP prefetcher [172]

LLC 2MB, 16-way, 10cc, 64-entry MSHR, LRU

DRAM 4GB DDR4, tRP=tRCD=tCAS=12, 12.8 GB/s

Branch Predictor hashed perceptron [273]

Table 4.1: System simulation parameters.

4.5 Methodology

4.5.1 Simulation Infrastructure

To evaluate Morrigan, we use ChampSim [13, 124], a detailed trace-based simulator that

models a 4-wide out-of-order processor. We extend ChampSim to simulate a realistic x86

page table walker, modeling the variable latency cost of page walks and also the variable

number of memory references they require to complete, similar to Section 3.7.1. Specifi-

cally, we added a 4-level page table, a page table walker, and a 3-level split MMU-Caches.

The page table walker supports up to 4 TLB misses, similar to Skylake µarchitecture [48],
while one page walk can be initiated per cycle. Regarding the cache hierarchy, we simulate

3 cache levels. Finally, our baseline uses the next-line L1i cache prefetcher but we also con-

sider additional L1i cache prefetchers from IPC-1 [32] in Sections 4.3.5 and 4.6.5. Table

4.1 summarizes our experimental setup.
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SMT Colocation

We also extended ChampSim to simulate a dual-threaded SMT core to evaluate our pro-

posal under workload colocation. Every cycle, a different thread fetches one basic block of

instructions. Note that our SMT model fully accounts for the contention due to colocation

in all shared µarchitectural structures (TLBs, PSCs, cache hierarchy).

4.5.1.1 Simulated Page Sizes

This work focuses on 4KB pages, similar to prior work [196]. So why not use large pages

to mitigate the address translation overhead? Although profitable when the application

exhibits high locality and the system is not fragmented, large pages are not a stop-gap so-

lution to the address translation bottleneck for both data and code accesses. In practice,

using large pages for data and code potentially hurts performance in datacenters and ex-

poses security vulnerabilities, as we explain below. Furthermore, the performance of legacy

systems and cloud applications that continue to use 4KB pages still matters for their users.

Large pages have been shown to introduce performance pathologies, particularly for

servers [56, 177, 304]. Another problem is the lack of flexibility in memory management

with large pages compared to standard 4KB pages [138, 141, 222]. Specifically, large pages

require memory contiguity and defragmentation that is not guaranteed in datacenters due

to high uptimes and the fact that datacenters handle thousands of diverse applications [141,

166, 298]. Indeed, [177] shows that memory defragmentation can result in tail latency

spikes and performance variability, both of which might negatively impact the performance

of datacenter applications. In addition, a recent work [141] shows that transparent 2MB

support for data pages is not adequate anymore and there is a need for creating transparent

support for 1GB pages. Finally, [122] reveals that large pages can harm the performance

of NUMA machines; this problem might be amplified with the advent of heterogeneous

memories where the OS has to migrate data between fast and slow tiers of memory.

In addition to the above, concurrently supporting multiple page sizes is a complex prob-

lem; this is the reason why Linux has support for transparent 2MB pages only for data,

which, in fact, took a long time to be properly implemented [48]. Today, Linux does not

have support for 2MB transparent large pages for code blocks. The only way to map ex-

ecutable files onto large pages in Linux is to use libhugetlbfs [46]. However, libhugetlbfs

does not provide automatic and transparent support for huge page code mappings since
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it requires shaping the text layout in the application’s address space [108]. Indeed, a re-

cent work [207] reveals that (i) mapping the .text section of server applications onto large

pages provides performance degradation since it puts pressure on the limited number of L1

I-TLB entries that can accommodate large pages, and (ii) mapping too many large pages

using libhugetlbfs in production machines makes the Linux kernel misbehave as it becomes

overwhelmed by the need to relocate physical pages to satisfy requests for large pages.

Another concern with mapping code to large pages is that doing so represents a security

risk. Modern systems use Address Space Layout Randomization (ASLR) to obstruct certain

security attacks by making it difficult for an adversary to predict target addresses. Prior

work has shown that using large pages for code significantly diminishes the effectiveness

of ASLR [72, 73, 113, 249]. Another security risk is the iTLB multihit [34] vulnerability

that arises when large pages are used for code. Specifically, when an instruction fetch hits

multiple entries in the iTLB it may incur a machine check error. To mitigate this issue, cloud

providers such as Microsoft Azure and Amazon force all executable instruction pages to be

mapped into 4KB pages [2, 3, 4, 11, 12], removing the possibility of multiple hits.

For these reasons, we focus our evaluation on standard 4KB pages but Morrigan is en-

tirely compatible with larger page sizes, as explained in Section 4.4.2.

4.5.2 Evaluated TLB Prefetchers

We implement and evaluate the previously proposed data TLB prefetchers SP, DP, ASP, and

MP, described in Section 2.4.1.2 as well as our proposal, Morrigan. Table 4.2 presents their

configuration parameters. TLB prefetches are placed into a dedicated TLB buffer named

Prefetch Buffer (PB); Table 4.2 presents its configuration. Regarding the size of the PB that

stores the prefetched PTEs, we evaluate different configurations, as shown in Table 4.2.

4.5.3 Workloads

Our evaluation considers a set of server workloads provided by Qualcomm for the 1st Con-

test on Value Prediction (CVP-1) [19] and the 1st Instruction Prefetching Championship

(IPC-1) [32]. These Qualcomm server workloads were previously used in other TLB-related

research works [196, 284]. For the rest of this chapter, we use QMM to refer to the Qual-

comm server workloads.
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Prefetcher / Component Description

SP –

DP Prediction Table: 64-entry, 4-way, LRU policy

ASP Prediction Table: 64-entry, 4-way, LRU policy

MP Prediction Table: 128-entry, 4-way, LRU policy

Morrigan
PRT-S1/S2/S4: 128-entry, 32-way, 2-bit counters, RLFU policy,

PRT-S8: 64-entry, 16-way, 2-bit counter, RLFU policy

PB (16-64)-entry, fully assoc, FIFO policy

Table 4.2: Configuration parameters of the previously proposed TLB prefetchers (SP, DP, ASP, MP),
Morrigan, and the Prefetch Buffer (PB) used for storing the prefetched PTEs. The parameters for
Morrigan have been empirically selected after sensitivity analysis.

Workloads with an instruction TLB MPKI of at least 0.5 are considered instruction TLB

intensive, thus taken into account in our experimental campaign. In total, our evaluation

considers 45 instruction TLB intensive QMM server workloads. Our simulations use 50

million warmup instructions, then 100 million instructions are executed to measure the

experimental results, similar to prior work [196].

We also analyze the SPEC CPU 2006 [41] and SPEC CPU 2017 [42] benchmark suites,

but we find that these workloads have an instruction TLB MPKI of 0.5 or less, so they are

not considered in our evaluation. However, we use the SPEC CPU 2006 and SPEC CPU

2017 benchmark suites in Section 4.3 to prove that the findings of our work are consistent

with the conclusions of previous works [166, 200].

Colocated Workloads

Datacenters colocate applications on SMT cores for better CPU and memory utilization

[166, 286]. To quantify the impact of instruction TLB prefetching under SMT colocation,

we simulate a dual-threaded SMT core executing two different QMM server workloads,

as explained in Section 4.5.1. Our experimental campaign, presented in Section 4.6.6,

considers 50 randomly chosen pairs of QMM server workloads.
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Figure 4.15: Miss coverage of Morrigan for various storage budgets. Higher is better.

4.6 Experimental Campaign

This section presents our experimental campaign. Section 4.6.1 focuses on the IRIP mod-

ule. Section 4.6.1.2 highlights the benefits of the RLFU replacement policy. Sections 4.6.2

and 4.6.4 quantify the performance gains of Morrigan over the state-of-the-art data TLB

prefetchers and other techniques that improve TLB performance, respectively. Section 4.6.3

evaluates alternative IRIP designs. Finally, Section 4.6.6 evaluates Morrigan under SMT

colocation. Note that all the evaluated TLB prefetchers use a PB to store prefetched PTEs.

4.6.1 IRIP Module

The IRIP module of Morrigan is an ensemble of four table-based hardware Markov prefetch-

ers. Therefore, the effectiveness of Morrigan directly depends on the number of entries in

the prediction tables (PRT-S1, PRT-S2, PRT-S4, PRT-S8) of the IRIP module. Each prediction

table entry requires 16 bits for storing a partial tag of the virtual page for indexing, 15 bits

per predicted distance of the prediction slots, and a 2-bit saturating counter per predicted

distance, as explained in Section 4.4.1.1 and Table 4.2.1 Subsequent sections examine the

impact of different parameters on the effectiveness of the IRIP module. Note that Sections

4.6.1.1 and 4.6.1.2 consider fully associative prediction tables and a 64-entry PB; Section

4.6.1.3 examines the impact of different prediction table associativities and PB sizes.

1The number of bits for the partial tags, predicted distances, and saturating counters were chosen empirically.
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4.6.1.1 Miss Coverage

This section examines the impact of different storage budgets on the miss coverage of Mor-

rigan. To do so, Figure 4.15 presents the miss coverage of Morrigan across all the QMM

server workloads as a function of different storage budgets. Starting with small storage

budgets, we observe a large increase in the miss coverage of Morrigan as the storage bud-

get increases. However, after 5KBs of storage, the miss coverage begins to plateau. Finally,

we observe that going beyond 7.5KB of storage budget provides negligible benefits.

4.6.1.2 Replacement Policy

The prediction tables of the IRIP module leverage the RLFU replacement policy, presented

in Section 4.4.1.1. To highlight the benefits of the RLFU policy we compare it against the

following alternatives: (i) LRU policy, (ii) Random policy, and (iii) LFU policy that replaces

the least frequently accessed entry. Figure 4.16 depicts the miss coverage of Morrigan

when the IRIP module leverages the above explained replacement policies as a function

of different budgets, similar to Section 4.6.1.1.

Looking at Figure 4.16, we observe that the RLFU replacement policy provides signifi-

cantly higher miss coverage than the other replacement policies when the prediction tables

of the IRIP module accommodate a small number of entries. As the size of the IRIP’s pre-

diction tables increases, the miss coverage gap between RLFU and the other replacement

policies shrinks because the prediction tables can store the majority of the instruction pages

that produce instruction TLB misses, thus making the replacement policy of the prediction

tables irrelevant.

Considering Morrigan with 3.76KB of storage budget, Figure 4.16 reveals that the LRU

and Random replacement policies provide the lowest miss coverage since the former evicts

useful entries based on their recency position and the latter randomly selects victims with-

out any insight. The LFU replacement policy provides higher coverage than the LRU and

Random replacement policies, highlighting that the instruction TLB miss stream correlates

well with the miss frequency of the instruction pages. Finally, we observe that the RLFU

policy provides the overall highest miss coverage results among all considered replacement

policies. Specifically, the RLFU policy improves miss coverage over the LFU policy by 4.9%.

This happens because RLFU randomly replaces one of the least recently used entries, acting

like a second-chance policy for not yet frequently accessed entries.
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Figure 4.16: Miss coverage of Morrigan when the prediction tables of the IRIP module use different
replacement policies across various storage budgets. Higher is better.

4.6.1.3 Configuring IRIP

The experimental results presented in Sections 4.6.1.1 and 4.6.1.2 reveal that there is a

cost-performance trade-off in the design space of Morrigan. For the rest of this section, we

focus on the configuration of Morrigan with 3.76KB of storage budget, which achieves 81%

miss coverage, as shown in Figure 4.15. We select this configuration because it represents

an attractive point in terms of miss coverage and required storage budget.

Using the above selected version of Morrigan, we evaluate different capacities and as-

sociativities for all the prediction tables of the IRIP module. Empirically, we found the

following preferred configuration: 128-entry (32 ways) PRT-S1, 128-entry (32 ways) PRT-

S2, 128-entry (32 ways) PRT-S4, and a 64-entry (16 ways) PRT-S8, as shown in Table 4.2.

Among the prediction tables, PRT-S8 is the smallest one because the number of instruction

pages that have more than 4 and up to 8 successors is lower than the number of instruction

pages that have 1, 2, and up to 4 successor pages, as shown in Section 4.3.3, and the prob-

ability of accessing a non-frequent successor page is relatively low, as illustrated in Figure

4.8. Finally, the empirically selected configuration provides a miss coverage of 76% (5%

lower than the version with fully associative prediction tables).

Regarding the PB size, we consider a 64-entry PB because a PB with 16 or 32 entries pro-

vides rather poor miss coverage compared to the 64-entry PB (4%-12% reduction), whereas

a 128-entry PB increases coverage by 2% compared to the 64-entry PB.
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Figure 4.17: Performance comparison between Morrigan and the prior data TLB prefetchers, pre-
sented in Section 2.4.1.2. All data TLB prefetchers have been configured to match the storage budget
of Morrigan. The baseline system does not apply TLB prefetching. Higher is better.

4.6.2 Comparison with Data TLB Prefetchers

This section compares Morrigan with previously proposed data TLB prefetchers, presented

in Section 2.4.1.2, that are configured to prefetch for the instruction TLB miss stream,

similar to Section 4.3.4. To make a fair comparison, we set the configuration parameters of

these prefetchers in such a way that they match the storage budget of Morrigan (3.76KB).

Performance Comparison

Figure 4.17 shows the performance comparison between Morrigan and the data TLB prefetch-

ers. The baseline considers the system without TLB prefetching. SP, DP, ASP, MP, and Mor-

rigan provide a geometric speedup of 1.6%, 0.1%, 0.4%, 0.7%, and 7.6%, respectively.

Morrigan significantly outperforms all previously proposed data TLB prefetchers because

the QMM server workloads exhibit highly complex patterns that the data TLB prefetchers

are unable to capture. Specifically, SP captures only the sequential patterns, DP and ASP

experience massive conflicts in their prediction tables, and MP uses the LRU policy that fails

at keeping in the prediction table the most useful instruction pages (Section 4.3.4).

In terms of PB hits provided by the two prefetching modules of Morrigan (IRIP and

SDP), we measured that 93% of the prefetches that hit in the PB were triggered by the IRIP

module, while the remaining 7% by SDP.

146



SP ASP DP MP Morrigan
0

25

50

75

100

125

150

%
 N

o
rm

a
liz

e
d

M
e
m

o
ry

 R
e
fe

re
n
ce

s

Demand Page Walks Prefetch Page Walks

Figure 4.18: Distribution of the normalized number of memory references due to demand and
prefetch page walks depicted with violin plots. The baseline does not apply TLB prefetching. Lower
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Cost of Prefetching

Figure 4.18 presents the distribution of the normalized number of memory references trig-

gered by demand and prefetch page walks for Morrigan and the prior data TLB prefetchers.

The term memory reference refers to a page walk reference that is served by the memory

hierarchy (L1, L2, LLC, DRAM), as explained in Section 2.4.1.1. Note that our methodology

takes into account cache locality in page walks (Section 4.5), and a page walk memory ref-

erence is triggered only for references that miss in the MMU-Caches, which we also model.

The normalization factor, 100% in Figure 4.18, is the number of memory references due to

demand page walks without TLB prefetching.

Looking at Figure 4.18, we observe that SP, ASP, DP, MP, and Morrigan reduce the mem-

ory references due to demand page walks by 11%, 1%, 2%, 8%, and 69% over a baseline

without instruction TLB prefetching, respectively. Regarding the prefetch page walks, SP,

ASP, DP, MP, and Morrigan trigger 20%, 1%, 6%, 7%, and 117% additional memory refer-

ences due to prefetch page walks with respect to the baseline, respectively.

The prior data TLB prefetchers do not reduce demand page walk memory references

for instruction accesses, so they provide negligible performance improvements, as Figure

4.17 shows. They also introduce only a small number of memory references for prefetch

page walks because (i) SP issues only one prefetch per instruction TLB miss, (ii) ASP and

DP experience a lot of conflicting accesses in their prediction tables which does not allow
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them to produce prefetch requests, and (iii) MP leverages the LRU replacement policy that

fails at keeping the most useful entries in the prediction table; on prediction table lookup

misses, no prefetches are issued.

While Morrigan does generate more memory references for prefetch page walks than

the existing data TLB prefetchers, it achieves much higher coverage than the prior designs.

Indeed, Morrigan reduces the memory references for demand page walks by 69% due to

its high coverage. The vast majority of memory references due to prefetch page walks are

caused by the IRIP module since the SDP module (i) issues only one prefetch at a time that

requires a prefetch page walk, and (ii) is enabled only when the IRIP module is unable to

issue prefetch requests, as explained in Section 4.4.1.2. However, the demand page walks

are responsible for the instruction TLB performance bottleneck since they take place on the

critical path of execution causing unavoidable pipeline stalls, while the prefetch page walks

are performed in the background without stalling the pipeline execution.

Finally, we measure the fraction of prefetch page walk memory references served by

each level of the memory hierarchy. We find that 20%, 25%, 45%, and 10% of Morrigan’s

prefetch page walk memory references are served by L1, L2, LLC, and DRAM, respectively.

The main takeaway is that the large reduction of demand page walk memory references

that Morrigan achieves, lowers the instruction address translation overhead, thus providing

significant performance enhancements.

4.6.3 Comparing Different IRIP Designs

This section highlights the benefits of using multiple prediction tables with different num-

bers of prediction slots per entry for the IRIP module over the state-of-the-art approach

that uses a single prediction table with a fixed number of successors per entry. To do so,

we implement Morrigan-mono whose operation is identical to Morrigan but its IRIP module

leverages a single prediction table with a fixed number of successors per entry, as the state-

of-the-art MP [165] does. Since we opt to provide an ISO-storage comparison between

Morrigan and Morrigan-mono, we configure the IRIP module of Morrigan-mono with a

203-entry prediction table with 8 prediction slots per entry,1 and a 2-bit confidence counter

per prediction slot to match the storage and the operation of Morrigan’s IRIP module.

1The IRIP module of Morrigan-mono has 8 prediction slots per prediction table entry to make a fair comparison
with the IRIP module of Morrigan since PRT-S8 can store up to 8 predictions per entry.
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Figure 4.19: Performance of Morrigan when the IRIP module uses an ensemble of four tables (Mor-
rigan) versus a single-table design (Morrigan-mono). The baseline system does not apply TLB
prefetching. Higher is better.

Figure 4.19 reveals that Morrigan outperforms Morrigan-mono across all the QMM

server workloads; the performance difference between Morrigan and Morrigan-mono is

1.9% on average. We observe this behavior because Morrigan makes better use of the avail-

able storage budget, hence tracking a much larger effective working set. Whereas Morrigan

dynamically tracks the required number of prediction slots per instruction page and enables

efficient transferring of entries between the prediction tables, Morrigan-mono accommo-

dates eight prediction slots per prediction table entry. Specifically, Morrigan-mono tracks

203 entries and Morrigan effectively tracks 448 entries (128*3+64). Indeed, we find that

Morrigan-mono requires 6.9KB of storage to match the performance of Morrigan having a

3.76KB storage budget.

4.6.4 Comparison with Other Approaches

This section compares Morrigan against other techniques that improve TLB performance

and the idealized scenario that considers a Perfect TLB for instruction references (Perfect L2

TLB (inst)), as presented in Section 4.3.4. The idealized scenario is included to compare the

performance of the evaluated schemes with the upper bound of the performance that can be

drained out of optimizing instruction TLB accesses. Figure 4.20 presents the experimental

results of this performance comparison.
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Figure 4.20: Performance comparison of Morrigan with other state-of-the-art approaches aimed at
improving TLB performance. The baseline system does not apply TLB prefetching. Higher is better.

ISO Storage

We compare our proposal, Morrigan, against a system that does not apply instruction

prefetching at any TLB level but for fairness it is enhanced with an enlarged L2 TLB. Specif-

ically, L2 TLB is augmented with 388 additional entries to match the storage budget of

Morrigan (including the PB) without affecting its access time. Figure 4.20 presents that

Morrigan provides 4.1% higher geometric mean speedup than the evaluated ISO-Storage

scenario.

Prefetching into the TLB

Prior TLB prefetchers [85, 165] and patents [36, 153] use a TLB buffer (named PB in this

thesis) to store the prefetched PTEs. Figure 4.20 shows that placing the prefetches of Morri-

gan directly into the TLB (P2TLB) provides an 18.9% geometric mean performance degra-

dation because it causes TLB pollution when the prefetches are inaccurate. Our results

are consistent with prior work [48, 85, 165] stating that prefetching directly into the TLB

causes pollution and performance degradation.
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Prefetched Address Translation [188]

The work of Margaritov et al. [188] proposes ASAP, a µarchitectural scheme that lowers the

latency cost of page walks by prefetching deeper levels of the radix tree page table, avoiding

serialized memory references on MMU-Cache misses. Figure 4.20 shows that Morrigan

outperforms ASAP by 4.8% (on average) because the MMU-Caches experience high hit

rates for the QMM server workloads, thus limiting the performance gains of ASAP. We find

that, on average, 1.4 memory references are required per page walk due to PSC misses. The

leaf page table level always triggers a memory reference, hence only 0.4 memory references

(on average) are triggered due to the other three page table levels. Therefore, the high PSC

hit rate of the QMM server workloads hurts the effectiveness of ASAP.

Combining Morrigan with ASAP

TLB prefetching is orthogonal to techniques that aim at lowering the page walk latency.

Consequently, it is natural to combine Morrigan with ASAP. The core idea is that ASAP low-

ers the page walk latency, thus it can be further used to accelerate the prefetch page walks

of Morrigan. Figure 4.20 illustrates that combining Morrigan with ASAP improves geo-

metric mean performance by 10.1% over a baseline without TLB prefetching, approaching

the ideal performance results (Perfect L2 TLB (inst)) for most QMM server workloads. We

observe such behavior because ASAP improves the timeliness of Morrigan’s prefetches by

accelerating the corresponding prefetch page walks.

4.6.5 Synergy with L1i Cache Prefetching

This section demonstrates that our proposal, Morrigan, is synergistic with state-of-the-art

L1i cache prefetching. Recall that our baseline includes the next-line L1i cache prefetcher

that does not cross page boundaries (Section 4.5). However, modern L1i cache prefetchers

cross page boundaries, as explained in Section 4.3.5. This section studies a state-of-the-

art L1i cache prefetcher, named FNL+MMA, which can cross page boundaries for instruc-

tion prefetching because it provides the highest performance among the IPC-1 L1i cache

prefetchers [32] when instruction address translation is taken into account, as shown in

Section 4.3.5.
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Figure 4.21: Impact of Morrigan on the performance of L1i cache prefetching. The baseline system
does not apply TLB prefetching and uses the next-line L1i cache prefetcher. Higher is better.

Figure 4.21 shows the performance results of a system that uses (i) FNL+MMA, (ii)

Morrigan with the next-line L1i cache prefetcher (Morrigan), as evaluated in all previ-

ous sections, and (iii) Morrigan combined with FNL+MMA L1i cache prefetcher (Morri-

gan+FNL+MMA). Note that the baseline corresponds to a system with a next-line L1i cache

prefetcher and without prefetching at any TLB level.

Overall, FNL+MMA, Morrigan, and Morrigan+FNL+MMA provide a geometric mean

speedup of 1.2%, 7.6%, and 10.9% across all QMM server workloads, respectively. We ob-

serve that the performance of the Morrigan+FNL+MMA scenario exceeds the sum of the

benefits of the individual prefetchers (Morrigan, FNL+MMA). The reason why the total per-

formance is greater than the sum of its parts is that Morrigan improves the timeliness of the

FNL+MMA. Specifically, 51.7% of the beyond-page-boundary prefetches of FNL+MMA that

require a page walk, hit in the PB of Morrigan+FNL+MMA, thus improving the timelines

of the respective instruction prefetches. The main takeaway of this study is that Morrigan

is synergistic with modern L1i cache prefetching.

4.6.6 Workload Colocation in SMT Cores

This section quantifies the performance of Morrigan under SMT colocation, as explained

in Section 4.5. For this set of experiments, we double the size of the prediction tables

of the IRIP module since Morrigan has to separately build Markov chains for two threads
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Figure 4.22: Performance of Morrigan under SMT colocation across 50 randomly chosen pairs of
QMM server workloads. The baseline system does not apply TLB prefetching. Higher is better.

in the same prediction tables. As a result, the storage budget of Morrigan is increased

to 7.5KBs. Our comparison includes the same set of prefetchers as in Section 4.6.5: (i)

Morrigan, (ii) FNL+MMA, and (iii) Morrigan+FNL+MMA. The baseline corresponds to a

system with the next-line L1i cache prefetcher and no TLB prefetching. Figure 4.22 presents

the performance evaluation under SMT colocation.

The overall trends present in Figure 4.22 are consistent with the ones presented in Fig-

ure 4.21 of Section 4.6.5. However, the absolute performance gains are higher under SMT

colocation, since colocating two QMM server workloads increases the pressure on the cache

and the TLB hierarchy, providing a higher opportunity for instruction prefetching. Morrigan

and FNL+MMA provide geometric mean speedups of 8.9% and 3.4%, respectively. Morri-

gan+FNL+MMA improves geometric mean performance by 13.7% because it (i) eliminates

the majority of the observed instruction TLB misses, and (ii) improves the timeliness of

the FNL+MMA, similar to Section 4.6.5. Finally, if the size of the prediction tables of the

IRIP module is not doubled in the SMT setup, Morrigan and Morrigan+FNL+MMA improve

performance by 6.4% and 11.1%, on average, respectively.
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4.7 Related Work

Increasing TLB Reach

Prior work increases the effective capacity of TLBs by coalescing virtually and physically

contiguous PTEs into a single TLB entry [219, 221]. These approaches are (i) limited by

coalescing opportunities exposed by the OS since physical contiguity is not guaranteed,

and (ii) susceptible to security issues when applied for code pages because an adversary

could exploit this contiguity to attack the system. In addition, Bhattacharjee et al. [86]
propose a shared among cores last-level TLB that exploits page table locality only on de-

mand page walks. Instead, Morrigan improves the performance of private-per-core TLBs

via µarchitectural prefetching, exploits page table locality for both demand and prefetch

walks, and does not disrupt the existing virtual memory subsystem.

Speculative address translation

Speculation-based approaches [67, 132, 222, 296] predict the address translation of non

TLB-resident pages, the processor continues executing instructions speculatively, and page

walks are initiated in the background to validate whether the predicted address translations

are correct. In case of valid speculation, the verification page walks overlap useful work,

hiding their latency cost. Speculation-based approaches are affected by the system state

since they rely on explicit virtual and physical contiguity to predict the missing address

translations which is not guaranteed in systems today. Our proposal, Morrigan, exploits

only virtual contiguity which comes at zero cost and is independent of the system state.

Mitigating TLB Miss Latency

Improving the performance of the MMU-Caches [66, 82] is an effective way to reduce the la-

tency cost of frequent TLB misses. POM-TLB [241] is a large die-stacked L3 TLB that reduces

the page walk memory references to just one reference. DVMT [51] allows the application to

define the appropriate page table format for an address space portion, reducing the required

page walk memory references. Alternatively, hashed page tables [118, 140, 259, 300] have

been proposed to resolve TLB misses faster than the conventional radix tree page tables.

Morrigan is complimentary to these approaches as it eliminates instruction TLB misses via

prefetching instruction PTEs ahead of demand instruction TLB accesses.
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TLB management

Typically TLBs employ a variation of the LRU replacement policy. Mirbagher-Ajorpaz et al.

[196] propose a new predictive replacement policy for the TLB. However, TLB replacement

policies aim at keeping in the TLB the most useful PTEs while TLB prefetchers proactively

fetch the PTE(s) that would be requested by forthcoming memory access(es). Elnawawy et

al. [112] identify heterogeneity in TLB behavior of data-intensive applications, i.e., a few

data pages have high reuse but poor temporal locality. In response, they propose Diligent

TLBs, a scheme that pins in the TLB such delinquent data pages. Although effective for data

pages, our analysis (Section 4.3.3) indicates that [112] needs to pin hundreds of instruc-

tion pages in the TLB to achieve significant MPKI reductions for instruction accesses; such

extensive pinning raises the TLB MPKI of data pages.

Software schemes

Compile-time optimization approaches [108, 207] modify hugetlbfs to place only hot func-

tions in superpages. Moreover, OS schemes using superpages [107, 177, 304] map small

code regions into superpages via superpage promotion and page table sharing. Recency-

based TLB Preloading [243] builds a recency stack of PTEs in the page table to derive

prefetches based on past access patterns. There are two major differences between Morri-

gan and [243]. First, Morrigan is a µarchitectural prefetcher that does not imply any page

table or software modification while [243] is a software prefetching scheme that modifies

the page table. Secondly, Morrigan considers access frequency for prefetching while [243]
relies on recency to drive prefetching – a feature that does not correlate well with instruction

TLB prefetching, as described in Section 4.3.4.

Instruction Cache Prefetching

Numerous L1i cache prefetchers have been proposed in recent literature [32, 233]. Al-

though effective for capturing the L1i cache miss stream, these prefetchers fall short at

prefetching for the instruction TLB miss stream because they are tuned for short prefetch

distances and low latencies, as the prefetched blocks are often found in the L2C or the

LLC [117]. In contrast, instruction TLB misses require larger prefetch distances and incur
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higher latency, caused by the serialized accesses to the memory hierarchy due to page walks.

Reinman et al. [233] propose FDIP, a prefetching scheme that speculatively identifies in-

struction blocks that would potentially cause an L1i cache miss in the future and prefetch

them from the lower-level caches. Intuitively, the impact of FDIP on tolerating instruction

TLB misses is relatively small since it would just bring instruction PTEs into the TLB when

the prefetched instruction blocks reside in memory pages different from the page where

the initially missed instruction block resides. Finally, FDIP would pollute the TLB when the

prefetched PTEs are inaccurate.

4.8 Summary

This chapter provides the first µarchitectural work to characterize the instruction TLB be-

havior of industrial server applications while providing evidence that instruction address

translation is a significant performance bottleneck in servers. To mitigate this bottleneck,

we propose Morrigan, the first ever and state-of-the-art instruction TLB prefetcher. Mor-

rigan is a fully legacy-preserving composite prefetching module whose design is based

on new reuse and locality insights of instruction TLB misses. To alleviate the instruction

address translation bottleneck of server applications, Morrigan leverages two complimen-

tary prefetch engines: (i) the Irregular Instruction TLB Prefetcher (IRIP), an ensemble of

table-based hardware Markov prefetchers that dynamically build and store variable length

Markov chains out of the instruction TLB miss stream while leveraging a new frequency-

based replacement policy to manage their internal state, and (ii) the Small Delta Prefetcher

(SDP), an enhanced sequential prefetcher that is engaged only when the IRIP module of

Morrigan is unable to issue prefetch requests. Considering an extensive set of industrial

server workloads, this paper demonstrates that Morrigan provides large performance en-

hancements by saving the majority of the instruction TLB misses while significantly reducing

the references to the memory hierarchy due to demand page walks.

4.9 Future Work

The work presented in this chapter is the first µarchitectural study to characterize the in-

struction TLB behavior of industrial server applications and provide evidence that instruc-
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tion address translation is an emerging performance bottleneck for this kind of applica-

tions. However, there is still large room for improving the performance of instruction TLB

prefetching since the oracle TLB prefetcher for instruction references, presented in Section

4.3, improves geometric mean performance over Morrigan by 3.5% across all the QMM

servers workloads used in this study. In addition, recent studies from leading processor

vendors demonstrate that the instruction address translation will be exacerbated in the

near future, essentially increasing the potential performance gains of optimizing TLB per-

formance for instruction references.

Next, we briefly present interesting future research directions in the emerging domain of

instruction address translation.

Agile Instruction TLB Prefetching

Although effective, the design of Morrigan employs four prediction tables with a fixed num-

ber of successor pages per entry. However, this design could be improved to agilely build and

store Markov chains with a variable number of successors into a single prediction table. De-

signing a hardware module that stores variable length Markov chains in a storage-efficient

manner is a very challenging task that has the potential to spur benefits in other areas

like instruction cache prefetching, branch prediction, data cache prefetching for irregular

applications, and task dependency management among others.

Branch Prediction Directed Instruction TLB Prefetching

Modern branch predictors [248] experience very high accuracy. Intuitively, the branch pre-

diction outcome could form a useful feature for instruction TLB prefetching since it provides

insights into when a branch is taken or not. This potential research direction would exam-

ine whether branch prediction can improve the accuracy of instruction TLB prefetching by

filtering out small-delta (big-delta) prefetches when the branch is taken (not taken).

ML-based Instruction TLB Prefetching

The goal of this potential research direction is to examine whether ML algorithms could be

extended to accurately prefetch for the instruction TLB miss stream of big code applications.
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Storage Medium for Prefetches and Replacement Policy

This potential research direction is similar to the one presented in Section 3.11. The fun-

damental idea is to examine whether the TLB PB could be reduced in size or removed by

placing the prefetched instruction PTEs with high confidence directly into the TLB. In ad-

dition, this research task includes the examination of different replacement policies for the

TLB and the TLB PB (if it exists).
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5
Page Size Aware Cache Prefetching

5.1 Introduction

System performance continues to be limited by the Memory Wall [193, 295], i.e., the dis-

crepancy between high main memory access latencies and high processor speeds, explained

in Section 2.1. To make matters worse, the increase in working set sizes of contemporary

applications outpaces the growth in cache sizes, resulting in frequent main memory ac-

cesses that deteriorate system performance due to the disparity between processor and

main memory speeds.

Low-latency caches can shrink the processor-memory performance gap by exploiting

applications’ locality to reduce the latency cost of demand memory accesses but are limited

in capacity due to the overhead of implementing large SRAM structures near cores, as

explained in Section 2.1.

Prefetching is a technique that hides the latency of memory accesses by proactively fetch-

ing data blocks into the cache hierarchy before a core explicitly demands them—alleviating

the pressure placed on the memory subsystem by applications with large working sets that
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Figure 5.1: Data structure residing on multiple 4KB pages (up) and one large page (down). Arrows
(black and red) illustrate the memory access patterns. Red arrows represent patterns across 4KB
pages that a cache prefetcher operating on the physical address space is not allowed to prefetch
for (even if it correctly identifies the patterns). Note that there are no red arrows when the data
structure resides in a large page.

the caches cannot fully contain [197]. Effective prefetching has proven successful in at-

tenuating the Memory Wall bottleneck; this is the reason why modern high-performance

computing chips employ various cache prefetchers, as presented in Section 2.2.5.

Cache prefetching is a very hot research topic with myriads of prefetchers being pro-

posed in recent literature [61, 62, 75, 76, 80, 143, 150, 172, 176, 195, 251, 262, 293, 294].
Prior cache prefetchers generally fall into two categories; spatial prefetchers and temporal

prefetchers, presented in Section 2.2.4. Spatial prefetchers [61, 75, 80, 143, 172, 195,

251, 262] exploit the similarity of access patterns across different memory regions to drive

prefetching decisions. In contrast, temporal prefetchers [62, 150, 176, 293, 294] do so by

recording sequences of past cache misses. Although effective, temporal prefetchers have

drawbacks compared to spatial prefetchers, as shown in Section 2.2.4. In summary: (i)

spatial prefetchers require orders of magnitude less metadata storage compared to tem-

poral prefetchers [61], (ii) spatial prefetchers can save compulsory misses [263] whereas

temporal prefetchers are fundamentally limited to prefetch for compulsory misses, and (iii)

spatial prefetchers not only save long-latency cache misses but also improve the overall sys-

tem energy consumption since they increase the DRAM row buffer hit ratio [61, 143, 289].
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Previously proposed spatial cache prefetchers operating in the physical address space

preserve one key property: they do not permit prefetching beyond 4KB physical page

boundaries as physical address contiguity is not guaranteed, i.e., addresses that are con-

tiguous in the virtual address space may be very distant in the physical address space. In

addition, crossing 4KB physical page boundaries for prefetching is susceptible to security

issues since an adversary could exploit it to create a side-channel [96, 128, 287]. Prefetch-

ers are unaware of the access permissions of specific pages, thus page-crossing prefetching

might allow loading data from pages the prefetcher’s cache would not otherwise have ac-

cess to. Indeed, a recent reverse engineering study [287] demonstrates how to exploit

page-crossing prefetching at the lower-level caches to perform a side-channel attack.

Limiting lower-level spatial cache prefetchers to prefetch for intra-4KB physical page

patterns limits their ability to speculate long streams of memory accesses [287]. Enabling

safe prefetching beyond 4KB physical pages requires direct access to the TLB hierarchy

and a reverse address translation [48]. These requirements pose high latency and energy

overheads, hindering safe prefetching across 4KB physical page boundaries in real-world

implementations.

The increase in working sets sizes of memory-intensive applications also places tremen-

dous pressure on the TLB hierarchy [52, 55, 58, 71, 82, 117, 166, 167, 169, 175, 231,

237, 298]. This pressure results in frequent page walks that deteriorate application per-

formance, even in the presence of dedicated architectural support for address translation

[31, 33, 66, 82, 87, 91, 123, 142, 154, 171, 173, 215, 249]. The requirement for small and

fast TLBs with low miss rates has led to the advent of large pages support in many operating

systems [43, 204], architectures [7, 8, 10, 30], and virtualization enterprises [129]. For

example, x86 architectures support 2MB and 1GB pages alongside standard 4KB pages to

increase TLB reach.

The core idea behind the work presented in this chapter is that spatial cache prefetch-

ers operating in the physical address space leave significant performance on the table by

limiting their pattern detection within 4KB physical page boundaries when modern systems

use page sizes larger than 4KB to mitigate the address translation overheads. Specifically,

this chapter demonstrates that exploiting modern prevalence and support for large pages

can significantly improve a system’s overall performance by enabling safe prefetching be-

yond 4KB physical page boundaries when the accessed blocks reside in large pages. Fig-

ure 5.1 illustrates this opportunity by considering a generic data structure and showing its
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Figure 5.2: Probability distribution depicted with violin plots showing the probability for a given
prefetch to be discarded because it attempts to cross 4KB physical page boundaries when the block
resides in a large page, considering four state-of-the-art spatial cache prefetchers (SPP [172], VLDP
[251], PPF [80], BOP [195]) and 80 memory-intensive applications, presented in Section 5.5.

memory access patterns when mapped into multiple 4KB pages A and a single large page

B . Although the data structure has predictable patterns across 4KB boundaries, the cache

prefetcher would not prefetch these patterns (red arrows in Figure 5.1 A ) due to the limi-

tation of prefetching for intra-4KB patterns. In contrast, when the data structure is mapped

to a large page (Figure 5.1 B ), the prefetcher could safely cross 4KB boundaries and spec-

ulate on future memory access patterns if it was aware that the block resides in a large

page. However, the page size information is not inherently available to cache prefetchers

operating in the physical address space.

We perform two sets of experiments to highlight the potential of leveraging the pres-

ence of large pages for improving spatial cache prefetching effectiveness. First, we demon-

strate that modern systems vastly use large pages by executing a set of memory-intensive

workloads spanning various contemporary benchmark suites, presented in Section 5.5.2,

on a real system [44] and observing that the majority of the considered workloads heav-

ily use large pages throughout their entire execution. Second, we quantify the missed

opportunity for safely crossing 4KB physical page boundaries when the block resides in

a large page (Figure 5.1 B ) by evaluating four state-of-the-art lower-level spatial cache

prefetchers, named SPP [172], VLDP [251], PPF [80], and BOP [195], measuring the num-
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ber of the prefetches that these prefetchers discard due to the requirement of prefetching

withing 4KB physical page boundaries when actually the accessed block resides in a 2MB

page, across a set of 80 memory-intensive applications spanning various benchmark suites

[19, 42, 74, 104, 117, 136]; Section 5.5.2 elaborates on the characteristics of the consid-

ered workloads. Figure 5.2 depicts the probability that a given prefetch will attempt to

cross 4KB page boundaries when the block resides in a large page, but the prefetcher dis-

cards it because it is unaware that the block resides in a large page. For most workloads,

1 out of 10 prefetches are discarded due to the restriction of not crossing 4KB bound-

aries. At the extreme, some workloads see 1 out of 2 prefetches being discarded due to

this limitation. Taking into account that cache prefetchers issue multi-million prefetches

per executed workload, the probability shown in Figure 5.2 reveals that enhancing lower-

level cache prefetchers with the page size information of the accessed data blocks has the

potential to significantly improve cache prefetching performance due to the opportunity of

safely crossing 4KB physical page boundaries when data blocks reside in large pages.

Based on our analysis findings, we propose the Page-size Propagation Module (PPM),

the first µarchitectural scheme that propagates the page size information to the lower-level

cache prefetchers, enabling safe prefetching beyond 4KB physical page boundaries when

the accessed block resides in a large page. PPM exploits the available address transla-

tion metadata after a first-level cache miss and directs the page size information to the

lower-level cache prefetchers through the first-level caches’ Miss Status Holding Registers

(MSHRs). PPM operates without requiring any costly TLB lookup or reverse address trans-

lation. In addition, we highlight that PPM does not imply any modification in the design

of a lower-level cache prefetcher and that is transparent to which cache prefetcher is used.

For the rest of this chapter, we refer to a prefetcher that exploits PPM as Page Size Aware

Prefetcher (Pref-PSA).1 It is important to note that a Pref-PSA inherently uses 4KB pages

to drive prefetching decisions since PPM enables prefetching beyond 4KB physical page

boundaries (when possible) without modifying the prefetcher’s design.

This work further capitalizes on PPM’s benefits by transparently integrating the notion

of large pages into the design of any lower-level cache prefetcher.1 We observe that doing

so may positively or negatively impact performance as some workloads enjoy great benefits

by making the cache prefetcher inherently use large pages while others experience perfor-

mance degradation because large pages provide a coarser representation of the memory

1It can be any cache prefetcher operating in the physical address space.
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access patterns across different data structures than standard 4KB pages. To avoid harming

performance while enjoying the benefits of integrating large pages in the prefetcher’s de-

sign, we design and propose a composite scheme that consists of two identical versions of

the same Pref-PSA1 that differ in only one aspect; one Pref-PSA inherently uses 4KB pages to

drive prefetching while the other Pref-PSA uses large pages. Finally, the composite scheme

uses adaptive selection logic based on Set-Dueling [228] to dynamically enable the most

appropriate of the two competing prefetchers. For the rest of this chapter, we refer to this

composite prefetcher as Page Size Aware Prefetcher with Set Dueling (Pref-PSA-SD).1

In summary, this chapter makes the following contributions:

• This is the first study to reveal that leveraging modern prevalence and support for

large pages can improve the effectiveness of spatial cache prefetchers operating in the

physical address space due to the arising opportunity for crossing 4KB physical page

boundaries when the accessed blocks reside in large pages.

• We propose Page-size Propagation Module (PPM), the first µarchitectural scheme that

enables safe prefetching beyond 4KB physical page boundaries. Combining state-of-

the-art spatial cache prefetchers SPP [172], VLDP [251], PPF [80], and BOP [195]
with PPM provides single-core geometric mean speedups of 5.5%, 2.1%, 4.7%, and

2.1% over their original implementations that stop prefetching at 4KB physical page

boundaries no matter the size of the page where the blocks reside, respectively, across

80 memory-intensive workloads. PPM does not imply modifications in the prefetcher’s

design and is transparent to which cache prefetcher is used.

• We capitalize on PPM’s benefits by transparently integrating large pages into any

prefetcher’s implementation and designing a composite prefetcher, named Page Size

Aware Prefetcher with Set Dueling (Pref-PSA-SD),1 that selects between two identical

Pref-PSAs that only differ in the page size that they use to drive prefetching deci-

sions. Our single-core evaluation shows that SPP-PSA-SD, VLDP-PSA-SD, PPF-PSA-SD,

and BOP-PSA-SD outperform their original version by 8.1%, 4.0%, 5.1%, and 2.1%,

respectively, across 80 memory-intensive workloads. In multi-core contexts, we re-

port geometric mean speedups up to 7.7% across different lower-level spatial cache

prefetchers and core configurations.
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5.2 Background

All necessary background information about hardware cache prefetching and the classifica-

tion of prior cache prefetchers into spatial and temporal prefetchers are presented in Sec-

tions 2.2 and 2.2.4, respectively. In addition, Section 2.4.2 presents essential background

while revealing the key challenges of prefetching for the different cache levels in virtual

memory systems. Modern architectural support for virtual memory systems provided by

leading processor vendors is presented in Section and 2.3.3.

This section as well as the entire chapter builds on top of the concepts presented in

Sections 2.2, 2.2.4, 2.4.2, and 2.3.3. Note that the information included in Section 2.4.2 is

particularly important since the work presented in this chapter leverages them to improve

the effectiveness of hardware cache prefetching. Therefore, understanding the concepts

presented in these sections is a prerequisite for following the rest of this chapter.

This chapter focuses on x86-64 architectures and considers a system with a 2-level TLB

hierarchy, a radix tree page table with 4 levels, MMU-Caches with 3 levels (called Page

Structure Caches (PSCs) in x86-64 architectures), and a 3-level cache hierarchy, similar to

Figure 2.20 in Section 2.4 and all previous chapters. In addition, it considers the most

common scenario, described in detail in Section 2.2, where prefetched blocks are placed

directly into the cache structure and the cache prefetcher is activated upon cache accesses.

5.2.0.1 Large Pages in Practice

Even in the presence of dedicated schemes for the virtual memory subsystem, presented in

Section 2.3.3, address translation is still a major performance obstacle for contemporary

memory-intensive applications since they place tremendous pressure on the TLB hierarchy,

resulting in frequent page walks that take hundreds of cycles to complete [188, 284]. To

alleviate this bottleneck, modern systems have introduced large pages (also known as super-

pages), i.e., pages larger than a standard 4KB page. For instance, x86-64 processors support

2MB and 1GB pages alongside standard 4KB pages. Effectively using large pages provides

unique performance and energy gains. A large TLB entry accommodates the translation of

a much larger contiguous memory region (e.g., a 2MB page covers 512 times more memory

space than a single 4KB page), increasing the effective capacity of the TLB. Finally, large

pages also reduce the number of page table levels that must be traversed upon a last-level

TLB miss (4 traversals with 4KB pages, 3 traversals with 2MB pages).
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Modern OSes provide two mechanisms to allocate large pages. The first approach is

manual since it requires the user to reserve physical memory for large pages and use the

hugetlbfs library [46] to map specific memory segments of the application onto large pages.

This approach is static and fundamentally limits the usage of large pages. In the second ap-

proach, the OS transparently allocates large pages without requiring any user involvement.

Specifically, the Linux Transparent Huge Pages (THP) mechanism [43] provides automatic

and transparent support for 2MB pages. However, this is not the case for pages larger than

2MB (e.g., 1GB pages for x86 architectures), which still require manual allocation using the

hugetlbfs library.1

5.3 Motivation

This section reveals that exploiting the presence of large pages in modern systems can

significantly improve cache prefetching effectiveness by enabling safe prefetching across

4KB page boundaries. Our analysis focuses on x86 architectures with 4KB and 2MB pages

since modern OSes provide automatic and transparent support for only these page sizes,

as explained in Sections 5.2.0.1 and 2.3.3. In addition, we leverage the existence of large

pages to improve the performance of cache prefetchers operating in the physical address

space (L2C/LLC prefetchers) and not cache prefetchers driving prefetching with virtual

addresses (L1d prefetchers) for the reasons explained in Section 2.4 and for two other

reasons. First, L1d prefetchers issue prefetch requests using virtual addresses on every L1d

access. However, the page size information is part of the address translation metadata

available after the TLB access, thus waiting for the page size information upon TLB misses

might harm the timeliness of L1d prefetching. Second, first-level caches necessitate simple

and fast prefetchers due to their sizes and access latencies as opposed to lower-level caches

that permit the implementation of sophisticated prefetchers. Finally, this chapter focuses on

spatial prefetchers for the reasons outlined in Section 2.2.4, thus for the rest of this chapter

we use cache prefetcher to refer to a spatial cache prefetcher placed alongside L2C or LLC,

unless stated otherwise.

1There is a recent work [231] that aims at automatically and transparently allocating all page sizes in x86
systems (including 1GB pages).
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5.3.1 Limitations of Existing Cache Prefetchers

Previously proposed spatial cache prefetchers operating in the physical address space pre-

serve one key property; they assume the use of only standard 4KB pages, limiting their

pattern detection to 4KB memory regions. Consequently, they do not permit prefetching

beyond 4KB physical page boundaries because physical address contiguity is not guaran-

teed, i.e., addresses that are contiguous in the virtual address space might not be contiguous

in the physical address space. Moreover, prior spatial cache prefetchers stop prefetching at

4KB physical page boundaries because crossing 4KB boundaries might introduce new secu-

rity vulnerabilities since an adversary could exploit page-crossing prefetching to attack the

system, as explained in Section 2.4.2.

Enabling safe spatial prefetching beyond 4KB physical page boundaries would ideally

require direct access to the TLB hierarchy to extract the virtual-to-physical mappings of the

pages where the prefetched blocks reside. Doing so for spatial prefetchers operating in the

physical address space requires allowing direct access from the lower-level caches to the

TLB hierarchy in order to perform a reverse translation from the physical to the virtual

address space. This reverse translation incurs high overheads since the reverse mappings

are multi-valued functions [48].

Finding 1. There is no previously proposed µarchitectural scheme that ensures safe spatial

prefetching beyond 4KB physical page boundaries for the lower-level caches.

5.3.2 Opportunity for Safe Prefetching Across 4KB Boundaries

As explained in Section 5.2.0.1, systems provide support for large page sizes to reduce

the severe performance and energy overheads of frequent page walks. When large pages

are used, the corresponding physical mappings (physical pages) are also large, i.e., the

virtual pages and corresponding physical pages are of the same size. Intuitively, limiting

cache prefetchers to a 4KB physical page boundary when the accessed block resides on a

large page leads to suboptimal performance gains due to the missed opportunity for safely

prefetching across 4KB physical page boundaries.

The first question we answer is whether modern systems practically use large pages or

not. To do so, we execute a set of memory-intensive benchmarks from various contemporary

benchmark suites (SPEC CPU 2006 [136], SPEC CPU 2017 [42], and GAP [74]) on an Intel
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Figure 5.3: Percentage of allocated memory mapped to 2MB large pages across the entire execution
of nine representative memory-intensive benchmarks from the SPEC CPU 2006 benchmark suite
[136], SPEC CPU 2017 benchmark suite [42], and GAP [74] benchmark suite, running on an Intel
Xeon E5-2687W machine. Most workloads preserve the high usage of 2MB large pages during their
entire execution.

Xeon E5-2687W machine, collecting the usage of 4KB and 2MB pages with the page-collect

tool [35] and Linux’s THP mechanism [43] enabled. Figure 5.3 presents the percentage of

allocated memory mapped in 2MB large pages across the entire execution of nine memory-

intensive workloads. Looking at Figure 5.3, we observe that the OS gives a lot of 2MB pages

to the vast majority of the evaluated workloads; the only exception is the soplex benchmark

from the SPEC CPU 2006 benchmark suite. The main takeaway of this experiment is that

most workloads heavily use 2MB pages, corroborating the conclusions of prior work [52,

231, 298]. Interestingly, we observe that most workloads preserve the high usage of 2MB

large pages during their entire execution.

Finding 2. Modern systems heavily use 2MB pages when executing memory-intensive appli-

cations and the high usage of 2MB pages is mostly preserved throughout the entire execution

of the applications.
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5.3.2.1 Quantifying the Potential

Qualitatively, making lower-level cache prefetchers aware of the size of the page where

the accessed blocks reside would enable safe prefetching beyond 4KB physical page bound-

aries when the corresponding block resides in a 2MB page, resulting in better prefetch-

ing timeliness and coverage. Removing the restriction of prefetching within 4KB physical

page boundaries would allow the lower-level cache prefetchers to detect more distinct pat-

terns, effectively increasing their coverage. Finally, the prefetchers would be able to timely

prefetch patterns that cross 4KB physical page boundaries instead of waiting for an access

to the next page to start issuing prefetches for the already captured patterns.

Underlying Prefetcher

To quantitatively answer whether or not large page exploitation can improve the effec-

tiveness of spatial prefetching for the lower-level caches, we consider the Signature Path

Prefetcher (SPP) [172], a confidence-based look-ahead L2C prefetcher that directs prefetched

blocks into L2C or LLC depending on its internal confidence mechanism. In practice, SPP

creates compressed signatures and associates them with the physical page addresses. To do

so, SPP relies on two main data structures: (i) the Signature Table, a table indexed with the

physical page number that stores the history of previously delta patterns per physical page

as a compressed signature, and (ii) the Pattern Table, a table indexed by the signatures

generated by the Signature Table that stores predicted deltas. Our motivational analysis

focuses on the SPP prefetcher to demonstrate the potential benefits of enabling beyond

4KB physical page boundaries spatial prefetching by leveraging the presence of 2MB pages

in modern systems since SPP provides the basis for many L2C prefetcher designs and op-

timizations [75, 80], and has been deployed in real-world industrial designs [126]. Our

experimental campaign, presented in Section 5.6, considers three additional L2C prefetch-

ers to highlight the versatility of the designs proposed in this chapter.

Methodology

To quantify whether large pages could bring benefits in spatial prefetching for the lower-

level caches, we use a version of the ChampSim simulator [13, 124] that concurrently sup-

ports 4KB and 2MB pages. Section 5.5 describes in detail our simulation infrastructure.
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Figure 5.4: Performance comparison between the original implementation of SPP and the ideal page
size aware version of SPP (SPP-PSA-Magic) across the same set of memory-intensive workloads used
for the physical machine measurements, presented in Figure 5.3. The baseline system does not apply
prefetching at any cache level. Higher is better.

We implement and evaluate two different versions of SPP to demonstrate the bene-

fits of exploiting the presence of 2MB pages for enhancing lower-level cache prefetching

performance. The first version corresponds to the original implementation of SPP, which

stops speculation at 4KB physical page boundaries, no matter the page size of the accessed

block since it does not have any notion of the page size information. The second version

of SPP differs from the original in that SPP magically knows the page size of the accessed

blocks. In practice, the idealized version of SPP stops prefetching at 4KB physical page

boundaries when the block resides in a 4KB page, similar to SPP original, but it permits

prefetching beyond 4KB physical page boundaries (and up to 2MB physical boundaries)

when it is aware that the block resides in a 2MB page. Figure 5.4 presents the performance

of the original SPP and its ideal page size aware version (SPP-PSA-Magic) over a baseline

without prefetching at any cache level, similar to prior work [75, 80, 172], across the same

set of memory-intensive benchmarks used for the real system measurements, presented in

Section 5.3.2. Our experimental campaign, presented in Section 5.6, considers additional

workloads from various benchmark suites to highlight the benefits of our proposals; Section

5.5.2 presents the complete set of workloads used in this work, describing their properties.
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Looking at Figure 5.4, we observe that SPP-PSA-Magic outperforms the original version

of SPP for all considered workloads. Overall, SPP-PSA-Magic improves geometric mean

speedup over SPP original by 5.2%. Therefore, we conclude that magically propagating

the page size information to the SPP prefetcher significantly improves its performance. The

only exception is soplexwhere SPP and SPP-PSA-Magic provide similar speedups since this

workload mainly operates on 4KB pages, limiting the opportunity for further performance

gains by exploiting the presence of 2MB pages. In practice, SPP-PSA-Magic outperforms SPP

original because it experiences better timeliness and coverage than SPP. This performance

difference occurs because SPP-PSA-Magic issues prefetches that SPP would otherwise dis-

card due to the limitation of prefetching for intra-4KB page patterns or postponing until

there is an access to the prefetched block’s physical page. Finally, we emphasize that SPP-

PSA-Magic does not imply any modification to SPP’s original design since it keeps driving

prefetching decisions using 4KB indexes, similar to the original implementation of SPP.

Finding 3. Making cache prefetchers operating in the physical address space aware of the

page size has potential for significantly improving system performance without requiring

any modification in the prefetcher’s design.

5.3.3 Integrating Large Pages into the Design

Section 5.3.2.1 reveals that magically propagating the page size information to the SPP

prefetcher provides large speedups across nine memory-intensive applications without im-

plying any modification to its original design. Apart from this, what would be the perfor-

mance impact of integrating 2MB pages into the design of SPP? This section answers this

question, using the same baseline and the same set of workloads as Section 5.3.2.1.

The original version of SPP uses multiple data structures (Signature Table, Pattern Table)

to drive prefetching, as described in Section 5.3.2.1. Only one of these structures, named

Signature Table, uses the physical page number for indexing. To integrate 2MB pages into

the design of SPP, we implement another version of the SPP prefetcher that differs from

its original version in only one aspect; it assumes 2MB pages, not 4KB pages, to index its

internal structure indexed with the physical page number, i.e., the Signature Table. Conse-

quently, the new SPP version can store deltas into the structure that stores predicted deltas

(Pattern Table) that are larger than the ones stored in the corresponding structure of SPP
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Figure 5.5: Performance comparison between the original implementation of SPP, the ideal page
size aware version of SPP presented in Figure 5.4 (SPP-PSA-Magic), and deal page size aware SPP
that inherently uses 2MB pages (SPP-PSA-Magic-2MB) across the same set of memory-intensive
workloads used for the physical machine measurements, presented in Figure 5.3. The baseline
system does not apply prefetching at any cache level. Higher is better.

original and SPP-PSA-Magic; this happens because the deltas within a 4KB page range be-

tween -64 to +64 whereas the deltas within a 2MB page range between -32768 to +32768.

In addition, the compressed signature stored in the Signature Table depends on the deltas

stored in the Pattern Table. Therefore, this new version of SPP has fundamental differences

compared to the original implementation of SPP and SPP-PSA-Magic: (i) it reduces the

aliasing in the Pattern Table due to indexing with 2MB pages at the cost of generalizing

memory accesses patterns among all 4KB pages within a 2MB memory block, and (ii) it can

discover patterns that SPP original and SPP-PSA-Magic fail at finding due to considering

larger deltas for prefetching and/or experiencing less aliasing in the Pattern Table. We em-

phasize that the new SPP version that drives prefetching decisions assuming 2MB pages is

magically aware of the page size to adjust its prefetching boundaries accordingly, similar to

SPP-PSA-Magic of Section 5.3.2.1. For instance, if a memory block resides in a 4KB page,

this new SPP version would index the Signature Table assuming that the block resides in a

2MB page but it would permit prefetching only within 4KB boundaries since it is aware that

the block resides in a 4KB page. We refer to this new SPP version as SPP-PSA-Magic-2MB.
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Figure 5.5 presents the performance of SPP original, SPP-PSA-Magic from Section 5.3.2.1,

and SPP-PSA-Magic-2MB. We observe that SPP-PSA-Magic-2MB behaves differently across

different benchmarks. For example, it provides huge speedups over both SPP and SPP-PSA-

Magic for the milc benchmark. We observe such behavior because SPP-PSA-Magic-2MB

does not suffer from aliasing in the Pattern Table and it prefetches for patterns that both

SPP and SPP-PSA-Magic fail at capturing due to considering smaller deltas. For benchmarks

like libquantum, SPP-PSA-Magic-2MB performs similarly to SPP-PSA-Magic (still greater

than SPP original). However, there are benchmarks (e.g., soplex) where SPP-PSA-Magic-

2MB degrades performance over SPP original. Such behavior occurs because indexing the

Signature Table with 2MB pages changes its content and the patterns it captures. Inter-

estingly, Figure 5.5 demonstrates that indexing with 4KB pages, regardless of whether the

block resides in a 4KB or a 2MB page, is sometimes better than indexing with 2MB pages

since SPP-PSA-Magic outperforms SPP-PSA-Magic-2MB for some workloads (e.g., soplex,

pr.road). This is the case for workloads that have fine-grain address patterns (4KB-grain).

In other words, when a block resides in a 2MB page it is seldom beneficial to index the

prefetcher’s internal data structures with 2MB pages; sometimes indexing with 4KB pages,

no matter the size of the page where the accessed block resides, provides better prefetches.

Finding 4. Integrating 2MB pages into the design of a cache prefetcher may positively or

negatively impact performance, depending on the workload. A scheme that dynamically se-

lects between two page size aware versions of a prefetcher that drive speculation considering

different page sizes has the potential to deliver outstanding benefits.

5.3.4 Putting Everything Together

Sections 5.3.2.1 and 5.3.3 highlight that leveraging the presence of 2MB pages in modern

systems for lower-level spatial cache prefetching has the potential to provide significant

benefits. However, the reported gains assume magically propagating the page size infor-

mation to the lower-level cache prefetchers. Realistically leveraging 2MB pages for en-

hancing cache prefetching performance requires (i) a scheme that propagates the page size

information to the lower-level cache prefetchers, and (ii) a smart mechanism that enables

the page-size aware version of the prefetcher that inherently assumes 2MB pages to drive

prefetching only when it is confident that doing so would positively impact performance.
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5.4 Design

We exploit modern prevalence and support for large pages to improve the effectiveness of

cache prefetching applied in the physical address space by designing and proposing the

Page-size Propagation Module (PPM), the first µarchitectural scheme that propagates the

page size information to lower-level cache prefetchers and enables safe prefetching beyond

4KB physical page boundaries when an accessed block resides in a large page. This section

demonstrates that PPM is compatible with any lower-level cache prefetcher without im-

plying any modification to the underlying prefetcher’s implementation. For the rest of this

chapter, we use Page Size Aware Prefetcher (Pref-PSA) to refer to a prefetcher that is aware

of the page size of the accessed blocks by exploiting the PPM module. In addition, this sec-

tion further capitalizes on PPM’s benefits through the design of a composite µarchitectural

scheme that transparently integrates large pages into the prefetcher’s design, providing ad-

ditional performance benefits at modest storage and logic costs. Sections 5.4.1 and 5.4.2

present in detail the design and the operation of the PPM module and the composite scheme

that integrates large pages into the design of a cache prefetcher, respectively.

5.4.1 Page-size Propagation Module (PPM)

To address our analysis findings, presented in Section 5.3, we design the Page-size Propa-

gation Module (PPM), an easily implemented µarchitectural scheme that makes lower-level

cache prefetchers aware of the page size of the accessed blocks, enabling safe prefetch-

ing beyond 4KB physical page boundaries when the accessed block resides in a large page

(Findings 2 and 3, Section 5.3.2). Practically, PPM augments the cache MSHRs with one

additional bit indicating the page size of the corresponding accessed block. PPM does not

imply any modification to the underlying prefetcher’s implementation nor any costly reverse

virtual to physical address translation (Finding 1, Section 5.3.1).

This section focuses on prefetching applied at the L2C to describe the design and the op-

eration of PPM while presenting the modifications required to propagate the page size infor-

mation to LLC prefetchers. We target L2C prefetching because contemporary L2C prefetch-

ers (i) store prefetched blocks into the L2C or LLC depending on their internal confidence

mechanisms, and (ii) a prefetcher placed in the L2C has a clearer view of the miss stream

than an LLC prefetcher. We do not target L1d prefetchers because (i) waiting for the page
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size information upon TLB misses might harm their timeliness since these prefetchers op-

erate on L1d accesses, as explained in Section 5.3, and (ii) the L1d opts for low-latency

accesses, hindering the implementation of sophisticated prefetchers, as explained in Sec-

tions 2.4.2 and 5.3.

5.4.1.1 Implementation and Operation

The key idea behind the design of the PPM module is that first-level caches are typically

implemented as virtually indexed physically tagged (VIPT) structures, as explained in Sec-

tion 2.4.2, thus upon an L1d miss the size of the page where the missed block resides is

available as part of the address translation metadata.

In practice, on L1d misses PPM extracts the page size information from the address

translation metadata and propagates it to the L1d MSHR. To do so, we augment each L1d

MSHR entry with one additional bit indicating the page size of the missed block. Since L2C

prefetchers are engaged on L2C accesses, i.e., L1d misses, PPM propagates the page size bit

from the L1d MSHR to the L2C prefetcher via the corresponding request’s stream, making

the L2C prefetcher aware of the page size (Pref-PSA); we refer to such cache prefetcher as

Pref-PSA.

Figure 5.6 illustrates the design and operation of a cache hierarchy enhanced with the

PPM module. In practice, upon an L1d miss, PPM records the corresponding miss to the L1d

MSHR coupled with one more bit annotating the page size of the corresponding block from

the address translation metadata. The page size bit is either 0 or 1, indicating whether
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the corresponding missed block resides in a 4KB or 2MB page, respectively. Then, Pref-

PSA takes the page size bit as input and adjusts its prefetching strategy accordingly. If the

page size bit is 0, Pref-PSA stops prefetching at 4KB physical page boundaries since the

block resides in a 4KB page. However, if the page size bit is 1, Pref-PSA safely crosses 4KB

boundaries since it is aware that the block resides in a 2MB page and stops prefetching at

2MB boundaries. Although Pref-PSA may prefetch across 4KB page boundaries when the

accessed blocks reside in 2MB pages, it continues to index its internal prefetching structures

using 4KB pages, regardless of the page size, since PPM does not imply any modification in

the underlying prefetcher’s design.

5.4.1.2 Additional Aspects

Storage Overhead

PPM’s implementation requires just one bit per L1d MSHR entry, assuming two concurrently

supported page sizes (4KB pages and 2MB pages in x86-64 systems). Typically, L1d MSHRs

have from 8 up to 64 entries, thus the storage overhead of our proposal, PPM, is considered

affordable for a real-world implementation.

Additional Page Sizes

Although architectural support for address translation is fundamentally similar between

different architectures (x86, ARM, RISC-V), some implementations support more than two

page sizes. PPM is compatible with any number of concurrently supported page sizes but

would require more bits stored in the L1d MSHR entries. Assuming N concurrently sup-

ported page sizes, PPM needs to additionally store ⌈log2 N⌉ bits on each L1d MSHR entry.

However, the computer architect is responsible for deciding whether PPM should provide

information for all supported page sizes; it might be sufficient to provide information for a

subset of the supported page sizes.

Operation on L1i Cache Misses

Today, Linux transparently supports 2MB pages only for data, not for code. In addition,

mapping code into large pages using the hugetlbfs library [46] might introduce security

vulnerabilities [17, 18, 279, 283], as extensively explained in Section 4.5.1.1. For these
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reasons, this work considers that all instruction pages are 4KB, and do not enhance the L1i

MSHR with the page size bit. We emphasize that this is not a limitation of our design, but

rather an implementation choice based on the policies followed by modern systems. PPM

can also be used, without any modification, to propagate the page size information to the

L2C prefetching module upon L1i cache misses.

Applicability on LLC Prefetching

The procedure for propagating the page size information to an LLC prefetcher is funda-

mentally similar to the one explained in Section 5.4.1.1, but with another propagation

level. First, the L2C MSHR entries should also store a bit of annotating the page size. Sec-

ond, upon an L2C miss, the page size bit should be propagated from the L1d MSHR to the

L2C MSHR. Finally, the L2C MSHR routes the page size bit to the LLC prefetcher. Figure

5.7 presents the operation of a system that exploits PPM for enabling safe LLC prefetching

beyond 4KB physical page boundaries.

Security

The PPM module does not introduce new security vulnerabilities since it solely leverages

the page size information which is part of the address translation metadata available af-

ter the TLB access. An adversary could not use events such as context-switches and TLB

shootdowns [53, 57, 88, 181, 288] to violate the security guarantees of PPM; this would be

possible if PPM was storing the page size information into a data structure and that data

structure was not flushed upon TLB shootdowns and context switches.
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Figure 5.8: (A) L2C prefetching module comprised of two generic page size aware (PSA) prefetchers
and adaptive logic that dynamically selects between them, (B) selection logic implementation, (C)
operation in pseudo-code. Pref-PSA (Pref-PSA-2MB) drives prefetching assuming 4KB (2MB) pages.

5.4.2 Integrating Large Pages in the Design

This section builds on top of the proposed PPM module, presented in Section 5.4.1, and

presumes that the page size information propagates to the L2C prefetching module. In other

words, this section assumes the placement of a generic Page-size Aware Cache Prefetcher

(Pref-PSA) alongside L2C.

In this section, we demonstrate how to combine an existing Pref-PSA with another page

size aware version of the same prefetcher that inherently uses 2MB pages to drive prefetch-

ing decisions; we refer to this prefetcher as Pref-PSA-2MB. As explained in Section 5.3.3,

integrating 2MB pages into the design of an L2C prefetcher may positively or negatively

impact performance, depending on the workload. To address this analysis finding while

avoiding performance pathologies, we implement a smart, easily implementable, and adap-

tive selection scheme that enables Pref-PSA-2MB only when it is highly confident that doing

so will positively impact performance.

178



Figure 5.8 (A) depicts a high-level overview of our composite design. The L2C prefetch-

ing module consists of (i) two generic page size aware prefetchers, one inherently using

4KB pages (Pref-PSA), similar to Section 5.4.1, and another inherently using 2MB pages

(Pref-PSA-2MB), and (ii) adaptive selection logic, based on Set-Dueling [228], that dynam-

ically selects between Pref-PSA and Pref-PSA-2MB. We refer to this composite design as

Page Size Aware Prefetcher with Set Dueling (Pref-PSA-SD).

5.4.2.1 Design of Pref-PSA-2MB

This section transparently integrates the notion of 2MB pages into the design of any L2C

prefetcher. To do so, we target the internal prefetching structures of the prefetcher indexed

with the physical page number (if any). The only modification necessary is that we require

these data structures to be indexed assuming 2MB pages, no matter the size of the page

where the accessed block resides. Although Pref-PSA-2MB assumes 2MB pages for index-

ing its internal structures, prefetching is permitted within the page where the trigger block

resides to avoid opening side-channels (Section 2.4.2). If the prefetcher has no structure

indexed with the physical page number, Pref-PSA-2MB is equivalent to Pref-PSA. Note that

Pref-PSA-2MB uses predicted deltas that range between -32768 and +32768 since it as-

sumes only 2MB pages. Therefore, Pref-PSA-2MB may, or may not, capture patterns that

Pref-PSA captures, as explained in Section 5.3.3.

5.4.2.2 Selection Logic

To address our last analysis finding and agilely select between Pref-PSA and Pref-PSA-2MB,

we implement an adaptive selection scheme based on Set Dueling [228], a technique orig-

inally invented to select between different replacement policies within a cache structure.

The selection logic that we employ for the Pref-PSA-SD scheme, presented in Figure 5.8

(B), consists of a single saturating counter, Csel, that reflects which prefetcher to enable for

the current cache access; Pref-PSA or Pref-PSA-2MB. Finally, we train both Pref-PSA and

Pref-PSA-2MB on all L2C accesses since training each prefetcher only when it is selected

results in insufficient training.

In practice, the selection logic clusters the L2C sets into three categories: sets dedicated

to Pref-PSA, sets dedicated to Pref-PSA-2MB, and follower sets dynamically assigned to the

most accurate prefetcher between Pref-PSA and Pref-PSA-2MB. We dedicate a small fraction
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of the total L2C sets between the two competing prefetchers to avoid negatively impacting

performance when one of the prefetchers harms performance. Empirically, we find that 32

sets are adequate for each prefetcher, similar to prior work [228].

To make our selection scheme which is based on Set Dueling properly work in the

context of hardware cache prefetching, we use one bit per L2C block to annotate which

prefetcher (Pref-PSA or Pref-PSA-2MB) issued the prefetch to ensure the correct updating

of the saturating counter Csel. This bit is required because the prefetched block may not be

stored in the same set as the trigger block. Stress that this is not the case for cache replace-

ment policies [228] because the cache replacement function domain is a single set. Finally,

the annotation bit implies 1KB extra storage for a 512KB L2C which we consider affordable

for real-world implementations.

5.4.2.3 Pref-PSA-SD Operation

Pref-PSA-SD monitors the efficacy of each prefetcher by marking prefetched blocks based on

the issuing prefetcher. Upon an L2C access, Pref-PSA or Pref-PSA-2MB issues prefetches for

the current access based on whether or not the accessed block belongs to either prefetchers’

sample set. If the corresponding block does not belong to either prefetcher’s sample sets,

Csel selects which prefetcher should be enabled. If the Most Significant Bit (MSB) of Csel

is 0, Pref-PSA issues prefetches for the current access. Otherwise, Pref-PSA-2MB generates

prefetches for the current access. The operation of Pref-PSA-SD explained above is also

illustrated with pseudo-code in Figure 5.8 (C).

To update Csel, Pref-PSA-SD takes into account the useful prefetches of the two com-

peting prefetchers (Pref-PSA, Pref-PSA-2MB) by looking at the annotation bit, presented in

Section 5.4.2.2, when there is a cache hit. In practice, a cache hit due to a prefetch issued by

Pref-PSA (Pref-PSA-2MB) decrements (increments) Csel by one. Empirically, we found that

three bits for Csel are adequate to identify the most useful cache prefetcher per execution

phase dynamically.

Finally, no matter which prefetcher is activated, we let both Pref-PSA and Pref-PSA-2MB

train on all L2C accesses and adjust their prefetching strategy accordingly. Training each

prefetcher only when it is selected, as Set Dueling implies when used for cache replace-

ment policies [228], provides poor performance gains due to insufficient training and false

pattern observation, as we show in Section 5.6.1.3.
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Component Description

CPU Core 1-4 cores, 4GZ, 352-entry ROB, 4-wide

L1 iTLB 64-entry, 4-way, 1cc, 8-entry MSHR, LRU

L1 dTLB 64-entry, 4-way, 1cc, 8-entry MSHR, LRU

L2 TLB 1536-entry, 12-way, 8cc, 16-entry MSHR, LRU

L1 iCache 32KB, 8-way, 4cc, 8-entry MSHR, LRU

L1 dCache 48KB, 12-way, 5cc, 16-entry MSHR, LRU, next line prefetcher

L2 Cache 512KB, 8-way, 10cc, 32-entry MSHR, LRU

LLC 2MB, 16-way, 20cc, 64-entry MSHR, LRU

DRAM 8GB (single-core), 32GB (multi-core), 3200MT/s

Branch Predictor hashed perceptron [273]

Table 5.1: System simulation parameters.

5.5 Methodology

5.5.1 Performance Model

We evaluate our proposals using the ChampSim simulator [13, 124], modeling a 4-wide

out-of-order processor and a three-level cache hierarchy, similar to prior work [80, 172].
Apart from the single-core evaluation, we examine the impact of our proposals in multi-

core contexts. Specifically, we model 4-core and 8-core out-of-order machines. Prefetching

is applied upon L2C accesses with prefetched blocks placed into the L2C or LLC, depending

on the L2C prefetcher’s confidence. There is no prefetching at the L1 caches, and all cache

levels use the LRU replacement policy. Table 5.1 presents our experimental setup.

Prior work on spatial prefetching for the lower-level caches is limited to 4KB physical

page boundaries, as explained in Section 5.3. However, modern OSes provide support for

large pages, as explained in Sections 5.2.0.1 and 5.3.2. To take into account large pages,

we extend the ChampSim simulator to concurrently support both 4KB and 2MB pages since
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100

Real System

ChampSim

Figure 5.9: Heatmap presenting the total allocated memory mapped to 2MB pages across the con-
sidered workloads when running on Champsim and on an Intel Xeon E5-2687W machine.

the THP mechanism [43] of Linux provides automatic and transparent support only for

2MB large pages (Section 5.2.0.1). Mapping data into 1GB large pages requires manually

using the libhugetlbfs [46] since THP does not transparently support 1GB pages. For these

reasons, our evaluation considers a system that concurrently supports 4KB and 2MB pages.

We verify that our infrastructure accurately simulates multiple page sizes by measuring

the usage of 4KB and 2MB pages for all benchmarks included in the SPEC CPU 2006 [136],
SPEC CPU 2017 [42], and GAP [74] benchmark suites, presented in Section 5.5.2, using

the page-collect tool [35] on an Intel Xeon E5-2687W machine and compare them with the

corresponding usages on our simulation infrastructure. Figure 5.9 presents the comparison

between the percentages of the total allocated memory mapped to 2MB pages across the

considered workloads running on Champsim and on the real system. Figure 5.9 reveals

that real systems heavily use 2MB pages (on average 85% of the total allocated memory

is mapped to 2MB pages across the considered workloads in our system), as also shown

in Section 5.3.2. Additionally, we measure that our simulation infrastructure simulates

multiple page sizes within only 1.8% error compared to the real system measurements for

the considered workloads.

5.5.1.1 Constrained Evaluation

We test our proposals under different DRAM bandwidth configurations that roughly corre-

spond to three commercial processors (Intel Xeon Gold [44], AMD EPYC [25], and AMD

Threadripper [39]), similar to prior work [76]. Moreover, we evaluate other constrained

scenarios that consider different entries in the L2C MSHR and different LLC sizes. Sec-

tion 5.6.1.4 evaluates these scenarios. Finally, the multi-core evaluation uses the default

configuration, presented in Table 5.1.
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Suite Benchmarks

SPEC CPU 2006

gcc, bwaves, mcf, milc, cactusADM,

leslie3d, gobmk, soplex, hmmer,

GemsFDTD, libquantum, lbm, omnetpp,

astar, wrf, sphinx3

SPEC CPU 2017

gcc_s, bwaves_s, mcf_s, cactusBSSN_s,

lbm_s, omnetpp_s, wrf_s, xalancbmk_s

x264_s, cam4_s, pop2_s, leela_s

fotonik3d_s, roms_s, xz_s

Qualcomm 39 floating point and integer traces

GAP bfs.road, cc.road, tc.urand, pr.road, bc.road, sssp.road

Machine Learning mlpack_cf

CloudSuite data_caching, graph_analytics, sat_solver

Table 5.2: Complete set of workloads used for evaluation.

5.5.2 Workloads

We consider an extensive and diverse set of workloads that span various contemporary

benchmark suites to evaluate the proposed designs of this chapter. Specifically, we use all

workloads from SPEC CPU 2006 [136] and SPEC CPU 2017 [42] benchmark suites, big

memory footprint workloads included in the GAP benchmark suite [74] using the road
input graph, presented in detail in Section 3.7.4, scale-out applications from CloudSuite

[117], a machine learning workload (mlpack [104]), and industrial workloads provided by

Qualcomm for the 1st Contest on Value Prediction (CVP-1) [19]. For the rest of this chapter,

we use QMM, SPEC, GAP, ML, and CLOUD to refer to the Qualcomm, the SPEC CPU 2006

and SPEC CPU 2017, the GAP, the mlpack, and the CloudSuite workloads, respectively.

Workloads with an LLC MPKI of at least 1 are considered memory-intensive and thus

considered in our evaluation. Overall, our evaluation considers 195 different traces span-

ning 80 workloads. After the MPKI selection, our set of workloads includes 39 QMM work-

loads, 31 SPEC CPU workloads, 6 GAP, 1 ML, and 3 CLOUD workloads. All traces were
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obtained using the SimPoint [218] methodology, and our evaluation reports the weighted

mean speedups achieved per application. Table 5.2 presents the complete set of workloads

used for evaluating the proposals of this chapter.1

All SPEC, GAP, CLOUD, and ML workloads run the first 250M instructions to warm up

the µarchitectural structures and 250M instructions are executed to obtain the experimental

results. For the QMM workloads, we use 50M warm-up instructions and 100M instructions

for gathering results [196].

5.5.3 Multi-Core Evaluation

To evaluate the proposed page size exploitation techniques, presented in Section 5.4, in

multi-core contexts, we randomly generate 100 mixes from our workload set. Both 4-core

and 8-core evaluations use the same number of warm-up and simulation instructions as

the single-core experiments. Note that we report the weighted speedup over the baseline

to obviate speedup overestimation due to applications with high IPC [80, 157]. For each

application running on a core, we compute the IPC in the multi-core context and the IPC in

isolation on a system with the multi-core specs. Then, we compute the weighted IPC as the

sum of IPCmulti-core/IPCisolation for all workloads in the mix. Finally, we normalize this sum

with the weighted IPC of the baseline.

5.5.4 Evaluated Prefetchers

To highlight our proposals’ versatility, we apply the proposed page size exploitation tech-

niques, presented in Section 5.4, on a set of four state-of-the-art spatial L2C prefetchers:

Signature Path Prefetcher (SPP) [172], Variable Length Delta Prefetcher (VLDP) [251],
Perceptron-based Prefetch Filtering (PPF) [80], and Best Offset Prefetcher (BOP) [195].

We also consider the Instruction Pointer Classifier Prefetcher (IPCP) [208] in Section

5.6.1.5 to compare against state-of-the-art L1d prefetching.2 Note that we evaluate two

versions of the IPCP prefetcher; the original IPCP that prefetches for intra-4KB patterns

and an enhanced IPCP version that freely crosses 4KB page boundaries.

1Section 5.6.1.1 presents an evaluation considering the entire SPEC CPU 2006 and SPEC CPU 2017 benchmark
suites to highlight that our proposals do not harm the performance of non memory-intensive workloads.
2We do not compare against the Berti L1d prefetcher [205] since Berti was accepted for publication in the
same conference as the paper that corresponds to this chapter.
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5.6 Experimental Campaign

This section presents the experimental campaign of this chapter. Section 5.6.1 focuses on

the single-core evaluation of our proposals. Specifically, Section 5.6.1.1 quantifies the per-

formance benefits delivered by our proposal on both memory-intensive and non memory-

intensive workloads. Section 5.6.1.2 justifies the reported performance improvements of

our proposals with an in-depth analysis. In addition, we compare various implementa-

tions of the selection logic in Section 5.6.1.3, we evaluate our proposals under various

constraints in Section 5.6.1.4, and we compare against state-of-the-art L1d prefetching in

Section 5.6.1.5. Finally, Section 5.6.2 presents the multi-core evaluation of our proposals.

5.6.1 Single Core Experiments

5.6.1.1 Performance

This section quantifies the single-core performance benefits of making the L2C prefetch-

ing module aware of the page size by exploiting the proposed PPM scheme, presented in

Section 5.4.1, while illustrating the source of these benefits. Specifically, we quantify the

performance enhancements of (i) the page size aware (PSA) versions of the considered

L2C prefetchers, (ii) the page size aware versions of the L2C prefetchers that inherently

use 2MB pages to index their structures (PSA-2MB), presented in Section 5.4.2, and (iii)

the composite scheme (PSA-SD) that dynamically selects to enable the most appropriate

between the PSA and PSA-2MB versions of the L2C prefetcher, described in Section 5.4.2.

Starting with the SPP prefetcher, Figure 5.10 reports the speedups of SPP-PSA, SPP-PSA-

2MB, and SPP-PSA-SD over the original SPP implementation that is not aware of the page

size information, thus it stops prefetching at 4KB physical page boundaries, across all con-

sidered workloads. Overall, SPP-PSA, SPP-PSA-2MB, and SPP-PSA-SD improve geometric

mean performance over the original SPP implementation by 5.5%, 3.0%, and 8.1% across

all considered workloads, respectively. The main takeaways of this evaluation are:

• SPP-PSA greatly improves performance over SPP original across the vast majority

of the considered workloads (e.g., GemsFDTD, fotonik3d_s, qmm_fp_95). We observe

such behavior because SPP-PSA exploits the PPM scheme to safely cross 4KB physical page

boundaries when an accessed block resides in a 2MB page, resulting in better prefetching

coverage and timeliness than SPP original.
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Figure 5.10: Performance comparison between the PSA, PSA-2MB, and PSA-SD versions of the SPP
prefetcher. The speedups are computed over the original implementation of SPP that considers only
4KB pages and stops prefetching at 4KB physical page boundaries [172]. Higher is better.
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• SPP-PSA-2MB behaves differently across different applications; for some workloads

it greatly outperforms SPP original (e.g., milc, qmm_fp_67) while for others it greatly

degrades performance (e.g., cactus, tc.road), corroborating our last analysis finding

(Finding 4, Section 5.3.3) which states that it is seldom beneficial to integrate 2MB pages

into the design of a lower-level cache prefetcher. We observe such behavior due to the

SPP-PSA-2MB’s intrinsic properties: (i) SPP-PSA-2MB indexes its internal prefetching struc-

tures assuming 2MB pages that provides a coarser representation of the access patterns

than indexing with 4KB pages and less aliasing in the prediction tables, and (ii) SPP-PSA-

2MB considers more strides for prefetching than SPP-Pref-PSA; SPP-PSA-2MB uses strides

ranging between -32768 and +32768 while SPP-PSA uses strides ranging between -64 and

+64, as explained in Section 5.3.3). Therefore, for workloads like milc, SPP-PSA-2MB out-

performs SPP-PSA because it (i) does not suffer from aliasing in the prediction table, and

(ii) uses strides larger than 64 that manage to detect patterns that SPP-PSA fails at finding

due to only considering deltas smaller than 64. However, for benchmarks like tc.road,

SPP-PSA-Magic-2MB degrades performance over SPP original and SPP-PSA because index-

ing its internal structure with 2MB pages erroneously generalizes different access patterns

experienced by different 4KB pages residing in the same 2MB memory block into the same

prefetching structure entry. In other words, indexing the prefetching structures assuming

4KB pages, regardless of whether the block resides in a 2MB page, is sometimes better than

indexing assuming 2MB pages; this is the case for workloads with 4KB-grain address pat-

terns. The main takeaway is that SPP-PSA-2MB may positively or negatively impact the

performance of the system, depending on the workload, essentially motivating the design

of the SPP-Pref-PSA-SD prefetching scheme.

• SPP-PSA-SD provides the overall best performance gains over SPP original. This

benefit occurs because SPP-PSA-SD accurately enables the most appropriate prefetcher be-

tween SPP-PSA and SPP-PSA-2MB. For benchmarks like milc and qmm_fp_67, SPP-PSA-SD

identifies that SPP-PSA-2MB is more effective than SPP-PSA and primarily enables SPP-PSA-

2MB. In contrast, SPP-PSA-SD consistently enables SPP-PSA for benchmarks like sphinx3,

pr_road, and qmm_fp_12 since it identifies that SPP-PSA-2MB does not provide useful

prefetches for these benchmarks. Interestingly, we observe that for some workloads (e.g.,

qmm_fp_87, cactuBSSN_s) SPP-PSA-SD yields better performance gains than its best-

performing prefetcher as these workloads benefit from dynamically switching between the

SPP-PSA and SPP-PSA-2MB prefetchers across different execution phases.
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Figure 5.11: Performance comparison between the PSA, PSA-2MB, and PSA-SD versions of state-of-
the-art L2C prefetchers, across all considered benchmark suites. The speedups are computed over
the original implementation of the corresponding prefetcher, similar to Figure 5.10. Higher is better.

For workloads operating mainly on 4KB pages (e.g., soplex, hmmer, omnetpp, gcc_s,

graph_analytics) SPP-PSA and SPP-PSA-SD merely improve performance over SPP orig-

inal because there exist only a few opportunities for safely crossing 4KB physical pages since

these workloads do not use many 2MB pages. Interestingly, SPP-PSA-2MB harms perfor-

mance for these workloads by erroneously generalizing access patterns to different 4KB

pages within the same 2MB memory block into the same prefetching structure entry, thus

using the same prefetch deltas.

Additional Prefetchers

To demonstrate the proposed page size exploitation techniques benefit any spatial lower-

level cache prefetcher, we consider the VLDP, PPF, and BOP L2C prefetchers, presented in

Section 5.5.4, and evaluate their original implementation as well as their PSA, PSA-2MB,

and PSA-SD versions. Figure 5.11 presents the geometric mean speedups of the PSA, PSA-

2MB, and PSA-SD versions of SPP, VLDP, PPF, and BOP prefetchers across all the considered

benchmark suites, presented in Section 5.5, coupled with a geometric mean across all work-
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loads. The speedups are computed over the original versions of the considered prefetchers,

similar to Figure 5.10. For example, the speedups of the VLDP-PSA/VLDP-PSA-2MB/VLDP-

SD are computed over the original implementation of the VLDP prefetcher that considers

only 4KB pages and stops prefetching at 4KB physical page boundaries.

Overall, the results reported in Figure 5.11 drive conclusions consistent with the ones

reported for the SPP prefetcher in Figure 5.10: (i) the PSA version of all prefetchers greatly

improves performance over the original versions across all considered benchmark suites

(e.g., VLDP-PSA improves geometric mean performance over VLDP original by 3.0% for the

QMM workloads), (ii) the PSA-2MB version provides modest performance gains because

it improves or degrades performance depending on the workload (e.g., PPF-PSA-2MB im-

proves (degrades) performance for the QMM (SPEC) workloads by 2.1% (1.3%)), and (iii)

the PSA-SD version provides the best speedups since the selection logic enables the most ap-

propriate prefetcher between PSA and PSA-2MB (e.g., PPF-PSA-SD outperforms PPF original

by 5.1% across all workloads). Finally, all BOP versions (PSA, PSA-2MB, PSA-SD) provide

the same speedups because BOP does not use any structure indexed with the page size,

causing BOP-PSA-2MB to degenerate to BOP-PSA. Therefore, BOP’s PSA, PSA-2MB, and

PSA-SD versions are identical, as explained in Section 5.4.2.

Non Memory-Intensive Workloads

Intuitively, the proposed page size exploitation techniques do not harm the performance of

workloads that do not place high pressure on the cache hierarchy since they only leverage

the page size information to improve the effectiveness of cache prefetching. To quanti-

tatively address this concern, we quantify the impact of our proposals on less memory-

intensive workloads by temporarily augmenting our workload set with all SPEC CPU 2006

and SPEC CPU 2017 workloads no matter their cache MPKI rates, and evaluate all consid-

ered L2C prefetchers coupled with all page size exploitation techniques. Table 5.3 presents

the geometric mean performance of the PSA, PSA-2MB, and PSA-SD versions of all con-

sidered prefetchers across three different sets of workloads: (i) the non-intensive SPEC

CPU 2006 and 2017 workloads (ii) the 80 memory-intensive workloads, presented in Sec-

tion 5.5.2, and (iii) the 80 memory-intensive workloads plus the non-intensive SPEC CPU

2006 and SPEC CPU 2017 workloads. Looking at the performance results for Workload Set

1, we observe that our proposals (PSA, PSA-SD) do not slow down the execution of the
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Prefetcher Workload Set 1 Workload Set 2 Workload Set 3

SPP-PSA 0.1% 5.5% 4.1%

SPP-PSA-2MB -0.4% 3.1% 2.2%

SPP-PSA-SD 0.0% 8.1% 6.1%

VLDP-PSA 0.1% 2.1% 1.7%

VLDP-PSA-2MB 0.4% -0.5% -0.3%

VLDP-PSA-SD 0.8% 4.0% 3.3%

PPF-PSA 0.1% 4.7% 3.4%

PPF-PSA-2MB -0.4% 0.4% 0.2%

PPF-PSA-SD 0.0% 5.1% 3.8%

BOP-PSA 0.1% 2.1% 1.6%

Table 5.3: Geometric mean speedups of the PSA, PSA-2MB, and PSA-SD versions of the consid-
ered prefetchers across (i) the non memory-intensive workloads from SPEC CPU 2006 and SPEC
CPU 2017 benchmark suites (Workload Set 1), (ii) the 80 memory-intensive workloads of Section
5.5.2 (Workload Set 2), and (ii) the 80 memory-intensive workloads plus the non memory-intensive
workloads from SPEC CPU 2006 and SPEC CPU 2017 benchmark suites (Workload Set 3). BOP-PSA-
2MB and BOP-PSA-SD are excluded from this comparison because BOP does not use any structure
indexed with the page size, thus all its page size aware versions are identical. The speedups are
computed over the original implementation of the corresponding prefetcher, similar to Figure 5.10.

non memory-intensive SPEC workloads. In addition, it can be observed that the speedups

are slightly higher when we evaluate our proposals using the 80 memory-intensive work-

loads (Workload Set 2) than when considering both intensive and non-intensive workloads

(Workload Set 3) because the non-intensive SPEC workloads lower the reported geometric

mean speedups. The main takeaway of this experiment is that page size aware lower-

level cache prefetching provides significant benefits for memory-intensive workloads with-

out negatively impacting the performance of non memory-intensive workloads.

5.6.1.2 Sources of Performance Enhancements

This section justifies the benefits delivered by the proposed page size exploitation tech-

niques. This section analyzes only the PSA and the PSA-SD versions of the prefetchers and

does not consider their PSA-2MB version since the PSA-2MB version is part of the PSA-SD

design that dynamically selects between the PSA and PSA-2MB versions of the prefetchers.
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Figure 5.12: Impact of PSA and PSA-SD versions of SPP on performance, L2C/LLC access latency,
L2C/LLC miss coverage, and L2C/LLC prefetching accuracy. All results are computed over the orig-
inal implementation of SPP. For all considered metrics higher is better.

191



5. PAGE SIZE AWARE CACHE PREFETCHING

Figure 5.12 considers different metrics to explain the performance enhancements of our

proposals on the SPP prefetcher. Specifically, we use the following metrics: (i) cache access

latency (measured in cycles) to quantify the impact of our proposals on prefetching time-

liness (better prefetching timeliness reduces cache access latency), (ii) miss coverage, and

(iii) prefetching accuracy. Moreover, we compute these metrics for both the L2C and LLC

since SPP directs prefetches in both caches, depending on its internal confidence mecha-

nism. Finally, for this set of experiments, we consider some representative workloads across

all considered benchmark suites coupled with an average across all considered workloads

(Mean in Figure 5.12) for readability. Note that all metrics are computed over the original

SPP version, similar to Section 5.6.1.1.

Looking at Figure 5.12 we observe that the performance gains of our proposals (PSA,

PSA-SD) do not have a single root (e.g., higher coverage). The speedups of SPP-PSA and

SPP-PSA-SD are caused by positively impacting different metrics, depending on the work-

load. This is the reason why looking only at the reported averages across 80 workloads

does not provide a clear understanding.

For example, SPP-PSA provides modest speedups for the milc benchmark, whereas

SPP-PSA-SD provides massive speedups for this benchmark due to SPP-PSA-SD enabling

the SPP-PSA-2MB prefetcher for this workload, as explained in Section 5.6.1.1. SPP-PSA

provides modest speedups for milc because it improves prefetching timeliness by signif-

icantly reducing the L2C and LLC access latency costs while providing higher prefetching

accuracy, at the cost of slightly reducing L2C prefetching coverage. Regarding the speedup

of SPP-PSA-SD for the milc benchmark, we observe that it provides a large coverage in-

crease (∼10% for L2C and∼22% for LLC) coupled with higher prefetching accuracy (∼10%

for L2C and ∼10% LLC) while reducing the L2C access latency by almost 40%. We observe

a slight increase in LLC access latency because most of the LLC misses have been eliminated,

and the remaining misses result in cold DRAM accesses. Similar behavior is observed for

other workloads like GemsFDTD and qmm_fp_112.

For workloads like bwaves, fotonik3d_s, and pr_road, SPP-PSA and SPP-PSA-SD

provide similar speedups because SPP-PSA-SD mainly enables SPP-PSA since SPP-PSA-2MB

is not helpful for these workloads due to assuming 2MB for driving prefetching decisions.

As a result, SPP-PSA and SPP-PSA-SD have almost the same impact in the metrics presented

in Figure 5.12. For this group of workloads, both SPP-PSA and SPP-PSA-SD significantly

reduce L2C and LLC access latencies because they experience better prefetching timeliness
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Figure 5.13: Performance comparison between different implementations of the selection logic of
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any structure indexed with the page size. The reported speedups are computed over the original
implementation of the corresponding prefetcher, similar to Figure 5.10. Higher is better.

than SPP original while providing a slight increase in coverage and accuracy.

Both SPP-PSA and SPP-PSA-SD experience large speedups over the original implementa-

tion of SPP for workloads like qmm_fp_15, qmm_fp_67, and qmm_fp_95. In addition, SPP-

PSA-SD outperforms SPP-PSA since it enables SPP-PSA-2MB in specific execution phases.

For these workloads, both SPP-PSA and SPP-PSA-SD experience an accuracy increase of up

to 10% for both L2C and LLC, a slight L2C coverage increase (<10%), a massive LLC cover-

age increase (>13%), a massive reduction in L2C access latency due to better prefetching

timeliness, and a small increase in LLC latency, because most LLC misses have been elimi-

nated thus the remaining misses result in cold DRAM accesses.

For workloads like gcc_s, graph_analytics, and qmm_int_906 both SPP-PSA and

SPP-PSA-SD merely improve performance over SPP original because these workloads mainly

operate on 4KB pages, thus there is no potential for high performance gains. Consequently,

they have a small impact on the metrics of Figure 5.12, and the proposed page size exploita-

tion techniques merely improve their performance, as shown in Figure 5.10.

Finally, this section focuses on the SPP prefetcher to demonstrate the sources of per-

formance enhancements delivered by the proposed page size exploitation schemes (Figure

5.12). We observe similar behavior for the rest of the evaluated cache prefetchers (VLDP,

PPF, BOP).
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5.6.1.3 Different Selection Logic Implementations

This section highlights the benefits of the proposed selection logic, presented in Section

5.4.2, by comparing it against alternative selection logic implementations. Specifically, Fig-

ure 5.13 presents the geometric mean speedups of the PSA-SD versions of all considered L2C

prefetchers, across three different selection logic implementations: (i) original implemen-

tation of Set-Dueling [228] that trains the PSA and PSA-2MB only when they are selected

(SD-Standard), (ii) page size based selection scheme (SD-Page-Size) where the selection

logic blindly enables the PSA (PSA-2MB) version of the prefetcher when the accessed block

resides in a 4KB page (2MB page), and (iii) the proposed selection logic implementation

(SD-Proposed). In addition, we evaluate an ISO storage scenario that doubles the stor-

age budget of the original prefetchers’ implementations to match the budget of the PSA-SD

versions and the cost of the annotation bit (Section 5.4.2.2). Prefetcher BOP is excluded

from this experiment since BOP-PSA and BOP-PSA-SD are the same, as shown in Section

5.6.1.1. Finally, the speedups are computed over the original versions of the considered

L2C prefetchers, similar to Figure 5.11.

Figure 5.13 reveals that SD-Proposed provides the overall highest speedups across all

prefetchers (e.g., SD-Proposed outperforms the other selection logic implementations by up

to 6.4% for SPP). In addition, we observe that SD-Standard provides lower speedups than

SD-Proposed; this happens because SD-Standard trains the PSA and PSA-2MB versions of

the prefetchers only when they are selected, whereas SD-Proposed trains both prefetchers

across all accesses. Moreover, we find that SD-Page-Size provides good speedups but still

performs worse than the proposed selection logic implementation (SD-Proposed). We ob-

serve such behavior because indexing the internal prefetching structures of the considered

prefetchers with 2MB pages sometimes loses important information due to a coarser repre-

sentation of patterns, leading to suboptimal prefetching decisions. In other words, blindly

considering the page size to enable one of the PSA and PSA-2MB versions is seldom benefi-

cial. Sometimes it is better to assume 4KB (2MB) pages for indexing the internal prefetch-

ing structures even if the accessed block resides in a 2MB (4KB) page.1 This happens when

2MB pages accommodate data structures with orthogonal memory access patterns; in these

cases, the prefetcher is more effective at capturing the memory access patterns of the differ-

1No matter which page size is considered for indexing, prefetching is permitted within the page where the
accessed block resides.
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ent structures by internally considering 4KB pages since fewer data structures are clustered

within one 4KB page than a 2MB page. Finally, the ISO storage scenario’s speedups reveal

that doubling the prefetchers’ size merely improves performance, highlighting the benefits

of our proposals.

5.6.1.4 Constrained Evaluation

This section quantifies the impact of various constraints on the performance of the PSA

and PSA-SD versions of all considered prefetchers. Figure 5.14 presents the impact on

performance for various L2C MSHR sizes, LLC sizes, and DRAM bandwidths roughly corre-

sponding to various commercial processors, as presented in Section 5.5.1.1. The speedups

are computed over the prefetchers’ original versions, similar to Section 5.6.1.1.

Results presented in Figure 5.14 (A) and (B) reveal that no matter the L2C MSHR size

and the LLC capacity the PSA and the PSA-SD versions of all considered prefetchers con-

sistently provide large speedups over the original versions of the prefetchers. For instance,

even when the L2C MSHR has 8 entries, SPP-PSA and SPP-PSA-SD improve geometric mean

speedup over SPP original by 4.6% and 6.4%, respectively.
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Regarding the impact of DRAM bandwidth, presented in Figure 5.14 (C), on the speedups

of our proposals, we observe that the PSA and PSA-SD versions of the prefetchers consis-

tently improve performance over their original versions, even when DRAM bandwidth is

400 MT/s. The main takeaway of this evaluation is that exploiting the page size informa-

tion to safely prefetch across 4KB physical page boundaries provides large gains even in

bandwidth-constrained scenarios.

5.6.1.5 Comparison with L1d Prefetching

This section compares the PSA and PSA-SD versions of all considered L2C prefetchers with

the Instruction Pointer Classifier Prefetcher (IPCP) [208] which is a state-of-the-art L1d

prefetcher. We evaluate two versions of IPCP: the first (IPCP in Figure 5.15) stops prefetch-

ing at 4KB page boundaries, and the second (IPCP++ in Figure 5.15) is allowed to cross 4KB

page boundaries for prefetching only when the page where the prefetched block resides is

TLB resident, as explained in Section 2.4.2. Both IPCP and IPCP++ apply prefetching using

virtual addresses since they are placed alongside L1d. We also evaluate a simple next-line

prefetcher for reference. Figure 5.15 presents the speedups of the considered prefetchers

across all 80 memory-intensive workloads of Section 5.5.2. The baseline system does not

use prefetching at any cache level.
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Looking at Figure 5.15, we observe that the version of IPCP that crosses 4KB page bound-

aries for prefetching (IPCP++) delivers higher speedup than IPCP that stops prefetching

at 4KB page boundaries. Overall, IPCP++ improves geometric mean speedup over IPCP

by 4.6%. We observe such behavior because IPCP++ experiences higher coverage and

better timeliness than IPCP due to 4KB-crossing prefetching. However, the PSA and PSA-

SD versions of SPP and PPF outperform both IPCP and IPCP++. For example, SPP-PSA-

SD and PPF-PSA-SD provide 9.0% (4.4%) and 24.6% (20.0%) higher speedups than IPCP

(IPCP++), respectively. In addition, the versions of VLDP and BOP that exploit the page size

information to safely cross 4KB physical page boundaries for prefetching provide speedups

slightly lower than IPCP and IPCP++. The main takeaway of this experiment is that page

size aware L2C prefetching delivers equal or higher performance enhancement than state-

of-the-art L1d prefetching with and without crossing page boundaries.

5.6.2 Multi-Core Experiments

This section presents the performance benefits delivered by our proposals (PSA, PSA-SD) to

all considered L2C prefetchers in multi-core contexts. Figures 5.16 and 5.17 illustrate the

distribution of the speedups of the PSA and PSA-SD versions, across the SPP, VLDP, PPF, and

BOP prefetchers, in a 4-core and an 8-core context, respectively. Both 4-core and 8-core

experiments use 100 random mixes, as explained in Section 5.5.2. Finally, the speedups

reported in Figures 5.16 and 5.17 are computed over the original versions of the considered

L2C prefetchers, similar to Section 5.6.1.1.

Our multi-core evaluation reveals that both PSA and PSA-SD versions of all considered

L2C prefetchers provide large performance benefits for the vast majority of the 4-core and

8-core mixes. For example, SPP-PSA and SPP-PSA-SD provide a geometric mean speedup

of 5.6% and 7.7% over the original SPP implementation across 100 randomly generated 4-

core mixes. However, in the 8-core context, we observe that the PSA and PSA-SD versions

of all the prefetchers deliver lower performance enhancements than in the 4-core context.

This happens because both 4-core and 8-core evaluations use the same DRAM configuration

(Table 5.1 in Section 5.5). Therefore, there is less opportunity for performance improve-

ments by exploiting the page size information for prefetching in the 8-core context due to

limited bandwidth compared to the 4-core context.
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Figure 5.16: Distribution depicted with violin plots showing the 4-core speedups of the PSA and
PSA-SD versions of the considered L2C prefetchers (SPP, VLDP, PPF, BOP) across 100 4-core mixes.
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5.7 Summary

This chapter provides the first ever µarchitectural study to characterize the potential of en-

abling safe prefetching beyond 4KB physical page boundaries. In addition, it is the first

work to reveal that leveraging modern prevalence and support for large pages can improve

the effectiveness of spatial cache prefetchers operating in the physical address space due to

the arising opportunity for crossing 4KB physical page boundaries when the accessed blocks

reside in large pages. In response, we design and propose the Page-size Propagation Module

(PPM), a µarchitectural scheme that exploits the prevalence of large pages in modern sys-

tems to enable safe prefetching beyond 4KB physical page boundaries when the accessed

blocks reside in large pages. PPM is a fully-legacy preserving µarchitectural scheme that

incurs almost zero storage and logic costs and does not introduce new security vulnera-

bilities. We capitalize on PPM’s benefits by designing and proposing a module comprised

of two page size aware prefetchers that inherently assume different page sizes to drive

prefetching while using adaptive selection logic to enable the most appropriate page size

aware prefetcher per cache access. This composite module is transparent to which cache

prefetcher is used. Across an extensive set of academic and industrial workloads, we demon-

strate that the proposed page size exploitation techniques provide significant performance

enhancements on various state-of-the-art lower-level cache prefetchers while not harming

the performance of non memory-intensive workloads. Finally, we firmly believe that the

findings and the proposals of this chapter have the potential to impact next-generation in-

dustrial designs and initiate additional research in the domain of page size aware cache

prefetching.

5.8 Future Work

The work presented in this chapter is the first µarchitectural study to provide evidence that

propagating the page size information to the lower-level cache prefetchers has the potential

to provide outstanding performance enhancements when large pages are used. However,

hardware cache prefetching is an endless opportunity domain, as explained in Section 1.2,

thus this work is just the first step towards fully exploiting the page size information (and

potentially other address translation metadata) for enhancing the performance of cache

prefetching.
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Next, we briefly present interesting future research directions in the domain of cache prefetch-

ing that might trigger prefetches beyond 4KB page boundaries.

Page-size Aware Cache Prefetching & 1GB Pages

Superpages are pages that are larger than standard 4KB pages. For example, x86-64 ar-

chitectures provide support for both 2MB and 1GB superpages alongside base 4KB pages.

The work presented in this chapter focuses on 2MB superpages since Linux provides auto-

matic and transparent support only for 2MB superpages through the THP mechanism [43];
1GB superpages still require manually using the libhugetlbfs [46]. However, the increase

in working set sizes of applications outpaces the growth in cache sizes, further aggravating

the Memory Wall bottleneck. In response, the research community is actively working on

providing automatic and transparent support for 1GB superpages. Specifically, there is a

recent work [231] that aims at automatically and transparently allocating all page sizes in

x86 systems (including 1GB pages).

When 1GB pages are used, there is an opportunity for aggressive prefetching at the

lower-level caches by leveraging the proposed PPM module since 1GB pages are 512 times

bigger than 2MB pages. This potential research direction would examine the benefits of

exploiting the PPM module for applications that practically use 1GB pages.

TLB Prefetching & L1d Prefetching Beyond 4KB Boundaries

Prefetchers operating alongside the L1d cache have direct access to the TLB hierarchy, thus

they could easily cross 4KB page boundaries and search for the translation on the TLB

hierarchy. In practice, doing so is more complicated, as explained in Section 2.4.2. What

should L1d prefetchers do when the translation of the page where the prefetched block

resides is not TLB resident? Even in the case of oracle L1d prefetching, triggering a long-

latency page walk for fetching the translation of the page where the prefetched block resides

would greatly harm the timeliness of L1d prefetching since L1C prefetchers require quick

turnaround times on memory accesses due to the sheer amount of requests seen at the

first-level caches. For these reasons, state-of-the-art L1C prefetchers [208] typically permit

prefetching within standard 4KB page boundaries. This promising research direction would

design a synergistic TLB prefetcher aimed at improving the timeliness of L1d page-crossing

prefetching.
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6
Conclusions

Virtual memory amplifies the discrepancy between processor and main memory speeds

while increasing the energy consumption of the system due to the requirement of trans-

lating virtual addresses into physical ones upon memory accesses, even in the presence of

sophisticated architectural support for address translation. The advent of contemporary

applications with massive data and code footprints further exacerbates the Memory Wall

bottleneck since they place tremendous pressure on the TLB and cache hierarchies.

This dissertation provides evidence that hardware prefetching can significantly improve

the performance of virtual memory systems since it is a fully legacy-preserving hardware

technique that relies only on the memory access patterns of the applications, it does not

disrupt existing the existing software and hardware stacks, and is independent of the system

state, without requiring any OS involvement. In this direction, we introduce two novel TLB

prefetching schemes that reduce the TLB miss rates of contemporary memory-intensive

and large code footprint applications, and a novel module that enhances the performance

of hardware cache prefetchers operating in the physical address space by exploiting the

address translation metadata available at the µarchitectural levels.
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To improve the performance of address translation associated with data accesses, we

propose a unified solution that consists of the Sampling-Based Free TLB Prefetching (SBFP)

scheme and the Agile TLB Prefetcher (ATP). SBFP is a µarchitectural scheme that exploits

the locality in the last level of the radix tree page table to improve the performance and

reduce the memory footprint of TLB prefetching. ATP is a TLB prefetcher that combines

three low-cost engines by using adaptive selection logic while disabling TLB prefetching

during phases that is not useful.

Next, we provide the first µarchitectural work to characterize the instruction TLB behav-

ior of industrial server applications while providing evidence that instruction address trans-

lation is an emerging performance bottleneck in servers and datacenters. To improve the

performance of address translation associated with instruction accesses for big code server

applications, we propose Morrigan, the first ever hardware TLB prefetcher for instruction

accesses. Morrigan consists of two complementary prefetch engines: (i) the Irregular In-

struction TLB Prefetcher (IRIP) which is an ensemble of hardware Markov prefetchers that

dynamically build variable length Markov chains out of the instruction TLB miss stream

while using a novel frequency-based replacement policy, and (ii) the Small Delta Prefetcher

(SDP) which is a simple sequential TLB prefetcher.

The last contribution of this thesis targets to improve the efficacy of cache prefetchers

operating in the physical address space by exploiting modern prevalence and support for

large pages. We propose the Page-size Propagation Module (PPM), a µarchitectural scheme

that efficiently propagates the page size information to the lower-level cache prefetchers

and enables safe prefetching beyond 4KB physical page boundaries when the accessed block

resides in a large page, at the cost of augmenting the MSHRs of the first-level caches with

one bit. In addition, we design a composite prefetching module that consists of two prefetch

engines that both exploit PPM but drive prefetching decisions assuming different page sizes.

Finally, this composite design uses adaptive selection logic to dynamically switch between

the two page size aware prefetchers and is transparent to which prefetcher is used.

The proposals of this dissertation constitute practical solutions to real-world bottlenecks

of HPC and cloud systems since they incur minimal storage and logic overheads without

disrupting any software or hardware stack while being compatible with legacy systems.

Therefore, they have great potential to influence future industrial designs.
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6.1 Additional Future Work

Sections 3.11, 4.9, and 5.8, present potentially interesting future research directions for

each contribution of this dissertation. Apart from them, a potentially interesting research

direction is to examine the applicability of the proposals of this doctoral thesis on GPU

systems where address translation is also a major performance bottleneck [223, 223, 254,

254, 255] despite the existence of sophisticated architectural support aimed at reducing the

overheads of frequent page walks.
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Furthermore, the author participated in another research work carried out by members of

the same research group. The content of this publication has not been included in this thesis

since the author contributed as a collaborator instead of leading the investigation and the

work was under submission by the time of the thesis submission.
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present dissertation.
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8
Research Vision

Modern processor designs leverage various µarchitectural predictors and prefetchers to

bridge the processor-memory performance gap. In practice, fundamental computer archi-

tecture concepts like ILP, out-of-order execution, and speculative execution heavily depend

on the effectiveness of µarchitectural prefetchers and predictors.

Within the realm of computing, my research aims at identifying and exploiting the pre-

dictability of programs to design µarchitectural prefetching and prediction mechanisms for

the cache and the TLB hierarchy, improving cache/TLB management for emerging applica-

tions with large data and code footprints, leveraging machine learning algorithms to design

intelligentµarchitectural components, and re-thinkingµarchitectural designs for server and

data center applications.

In my perspective, a new golden age for computer architecture is rising as non-conventional

and groundbreaking approaches are needed to overcome the barrier that is placed by the

end of Dennard Scaling and the slowing of Moore’s law [215].

My research vision for the next years is to build intelligent µarchitectures. In this

direction, I aim to (i) conduct software-assisted µarchitectural research by exploiting infor-
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Figure 8.1: Research vision illustrated with a cartoon.

mation available in different layers of the transformation hierarchy to push the envelope

on µarchitectural research, given real-world technology constraints, and (ii) build smart

µarchitectural prefetchers and predictors that internally leverage machine learning algo-

rithms. Figure 8.1 illustrates my research vision for the next years.
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8.1 Software-Assisted µarchitectural Designs

The core idea is to pass software-sourced hints to the µarchitecture, through the ISA, that

can improve the efficacy of the µarchitectural components. Hardware prefetching is one

possible application of this idea (not the only one); the software encodes information about

the nature of the memory access patterns and transmits them to the hardware prefetchers,

which take them into account and adjust their prefetching strategy accordingly.

Another particularly appealing research direction is data and instruction cache prefetch-

ing via hybridization techniques. I envision the design of multiple low-cost hardware prefe-

tchers with low prefetching scope and high accuracy. To make this idea a success, a sophis-

ticated and highly accurate scheme that identifies the nature of the memory accesses and

accordingly enables the most appropriate prefetcher is required. This scheme could be

either a pure hardware predictor or a low-cost µarchitectural component that leverages

software-sourced encoded information about the nature of the access patterns.

8.2 ML for µarchitectural Prediction and Prefetching

Machine learning has provided great performance and accuracy gains in various µarchite-

ctural domains. The most prevalent examples are branch prediction [156] and cache re-

placement policies [157]. Moreover, recent works [76, 252] highlight that ML-based hard-

ware prefetchers have the potential to provide great benefits. The core idea behind my

vision is that well-established ML algorithms could be used to design intelligent and prac-

tical µarchitectural prefetchers, predictors, and replacement policies for the TLB and cache

hierarchy capable of providing great performance, coverage, and accuracy enhancements.

8.3 Other Domains

Apart from the domains presented above, I am particularly interested in conducting re-

search on the following computer architecture areas: (i) interaction between TLB manage-

ment and branch prediction, (ii) TLB management for native and virtualized environments,

(iii) address translation for hybrid memory systems (e.g., DRAM-NVMM), and (iv) server-

less computing, among others.
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8. RESEARCH VISION

8.4 Industry, Academia, and Teaching

My research vision also involves both industrial and academic collaborations since it aims

at effectively tackling the upcoming technological challenges in a practical and impactful

manner. Apart from that, my future plans include teaching computer architecture-related

courses as well as advising students since I firmly believe that tutoring is the best way to

master a topic.
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Abbreviations

ASP: Arbitrary Stride Prefetcher

ATP: Agile TLB Prefetcher

BD: Big Data

BOP: Best Offset Prefetcher

CC: CPU Cycles

CPU: Centra Processor Unit

CVP-1: 1st Contest on Value Prediction

DDR4: Double Data Rate 4

DP: Distance Prefetcher

FDT: Free Distance Table

FPB: Fake Prefetch Buffer

FSM: Finite State Machine

GPU: Graphics Processing Unit

H2P: H2 Prefetcher

HPC: High Performance Computing

ILP: Instruction Level Parallelism

IP: Instruction Pointer

IPC: Instructions Per Cycle

IPCP: Instruction Pointer Classifier Prefetcher

IPC-1: 1st Instruction Prefetching Championship

IRIP: Irregular Instruction TLB Prefetcher

L1d/L1D: L1 Data Cache

LFU: Least Frequently Used

L1i/L1I: L1 Instruction Cache
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Abbreviations

L2C: L2 Cache

LLC: Last Level Cache

LRU: Least Recently Used

MASP: Modified Arbitrary Stride Prefetcher

ML: Machine Learning

MLP: Memory Level Parallelism

MMU: Memory Management Unit

MP: Markov Prefetcher

MPKI: Misses Per Kilo Instructions

MSHR: Miss Status Holding Register

NL: Next Line

PB: Prefetch Buffer

PC: Program Counter

PD: Page Directory

PDP: Page Directory Pointer

PIPT: Physically Indexed Physically Tagged

PIVT: Physically Indexed Virtually Tagged

PML4: Page Map Level 4

PPF: Perceptron-based Prefetch Filtering

PPM: Page-size Propagation Module

PSA: Page Size Aware

PSA-SD: Page Size Aware with Set Dueling

PSC: Page Structure Cache

PT: Page Table

PTE: Page Table Entry

PTW: Page Table Walker

QMM: Qualcomm

SBFP: Sampling-Based Free TLB Prefetching

SDP: Small Delta Prefetcher

SP: Sequential Prefetcher

STP: Stride Prefetcher

SPP: Signature Path Prefetcher

TLB: Translation Lookaside Buffer
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Abbreviations

VIPT: Virtually Indexed Physically Tagged

VIVT: Virtually Indexed Virtually Tagged

VLDP: Variable Length Delta Prefetcher

VPN: Virtual Page Number
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